

Psychoneurodermatology

ACVD Resident Seminar

Chie Tamamoto-Mochizuki, DVM, dipAiCVD, Ph.D.

North Carolina State University Raleigh, NC

COI Disclosure

CTM has received a Ph.D. scholarship and a research grant from Zoetis

"<u>It Is the Brain that Itches, Not the Skin</u>"

Pruritus is a *Unique* Sensation

"Itch sensation is limited to skin, mucosa and cornea"

Learning Outcomes

- 1. To remember key pruritogens and their receptors
- 2. To be able to name psychoneurodermatological diseases
- 3. To be able to explain the mode of actions of drugs targeting neuronal pathways

- 1. Neuroanatomy and neurobiology of skin
- 2. Pathology of pruritus
- 3. Diagnosis of neuropathic/psychogenic skin diseases
- 4. Management of neuropathic itch

1. Neuroanatomy and Neurobiology of Skin

Cutaneous Sensory Receptors

Merkel cell

- Light touch
- Slowly-adopting <u>AB</u> sensory fiber

Merkel cells (CK20) Nerve fibers (red) Merkel cells (NSE)

Zimmerman. 2014. Science

Meissner's corpuscle

- Touch (dynamic skin deformation)
- Rapidly-adapting <u>AB</u> sensory fiber

Zimmerman. 2014. Science

Ruffini corpuscle

- <u>Stretch</u>
- Slowly-adapting <u>AB</u> sensory fiber

Zimmerman. 2014. Science

Zimmerman. 2014. Science

Pacinian corpuscle

- High pressure, vibration
- Rapidly-adapting <u>AB</u> sensory fiber

"Onion-like" structure

New Somatosensory Organ in Dogs?

Nonencapsulated naked nerve bundles

Hair follicle

- Light touch (Low-frequency vibration)
- <u>All types</u> of sensory fibers

Follicular keratinocytes (red)

Merkel cell touch dome (K8) Nerves (NF)

Zimmerman. 2014. Science

Peterson. 2016. Int. J Vis Exp

Each receptor sensors the same stimuli differently

Meissner's corpuscle

Ruffini's ending

Misery. 2014. Nat Rev Neurol

Intraepidermal Nerve Endings

Canine skin – Interaepidermal nerve fibers (b3T)

Laprais. 2017. Vet Dermatol

Thermoreceptors – Transient Receptor Potential

THE NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE 2021

David Julius Ardem Patapoutian

"for their discoveries of receptors for temperature and touch"

Temperature Heat pain

Core body temperature Inflammatory pain Neuropathic pain Visceral pain Protective reflexes

Thermoreceptors – Transient Receptor Potential

Dhaka. 2006. Annu. Rev Neurosci

Nociceptor (Pain) vs Thermoreceptor (Heat)

111/

Tissue damage

Magnitude of afferent response

Stimulus

Quiz!

1. Which of the following mechanoreceptor has the smallest receptive?

- a. Merkel cell axon complex
- b. Meissner corpuscle
- c. Ruffini corpuscle
- d. Pacinian corpuscle

Summary – Cutaneous Sensory Receptors

Classicization of Cutaneous Sensory Nerve Fibers

Types of nerve fibers		Axon diameter	Conduction velocity	Receptor types	Sensory function
Αβ/ΙΙ		Medium	Medium	Merkel cells, Meissner's corpuscles, Ruffini endings, Pacinian corpuscles, hair follicles	Touch, pressure
Aδ/III		Small	Medium	Hair follicles, free nerve endings	Fast pain, temperature
C/IV		Smallest	Slow	Hair follicles, free nerve endings	Slow pain, temperature, itch

Classicization of Cutaneous Sensory Nerve Fibers

Dorsal Root Ganglion

Ganchiogco 2019. Brain Behav

Pseudounipolar neuron

LaTasha. 2020. Toxicol Pathol

Sensation from Skin to Brain

Gate Control Theory

Quiz!

2. Which description correctly characterize C nerve fivers?

- a. Myelinated, large diameter, fast conduction velocity
- b. Myelinated, small diameter, slow conduction velocity
- c. Unmyelinated, small diameter, fast conduction velocity
- d. Unmyelinated, small diameter, slow conduction velocity

2. Pathology in Pruritus

ltch

An unpleasant sensation which causes an intense desire to scratch

- 1. Itch on primary, <u>inflamed skin</u>
 - 2. Itch on primary, <u>non-inflamed skin</u>
- 3. Secondary scratch lesion

Pruritogen

Any substance/mediators that cause pruritus

- 1. <u>Amines</u> histamine, serotonin
- 2. <u>Neuropeptides</u> substance P, NGF
- 3. <u>Protease</u> KLKs, tryptase/chymase,
 exogenous proteases (HDM, Staphylococcus sp.)
- 4. <u>Cytokines</u> TSLP, IL-2, IL-4, IL-13, IL-31, IL-33

Mast cells, basophils

Cowhage (Velvet beans)

Histaminergic vs Non-histaminergic Itch Pathways

Histaminergic vs Non-histaminergic Itch Pathways

Brain activation map

- Histamine
- Cowhage (non-histaminergic)
- Co-activation

Acute vs Chronic Itch

Amines – Histamine

Histamine Receptors

Tiligada. 2017. *Histamine Receptors as Drug Targets;* Thurmond. 2008. *Nat Rev Drug Discov*

Does Histamine Induce Pruritus in Dogs?

60

Histamine

Comp 48/80

Anti-canine-lgE

Wheal & Flare

60

Pruritus

200 ·

Neuropeptides – Substance P

*Mrgpr: mas-related G protein-coupled receptors

Does Substance P Induce Pruritus in Dogs?

Wheal & Erythema

Substances*	Concentrations	Wheal 20 min†	Erythema 20 min†	Erythema 24 h†
Histamine	1 mg mL ⁻¹	•	++	+
Serotonin	0.25 mg mL ⁻¹	• (4 of	++ (3 of 5 dogs)	-
		5 dogs)		
	1.00 mg mL ⁻¹	•	++	-
	2.50 mg mL ⁻¹	•	+++	NR
Tryptase	2 ng mL ⁻¹	_	-	-
(human lung)	8 ng mL ⁻¹	_	_	-
	20 ng mL ⁻¹	_	-	NR
Substance P	6.74 μg mL ⁻¹	_	-	-
	26.96 µg mL ⁻¹	_	+ (3 of 5 dogs)	-
	67.4 µg mL ^{−1}	• (1 of	+ (3 of 5 dogs)	NR
		5 dogs)		
IL-2 (human	0.40 mg mL ⁻¹	_	-	+ (4 of
recombinant)				5 dogs)
	1.60 mg mL ⁻¹	_	++ (4 of 5 dogs)	++
Saline	0.9%	_	-	-

<u>Pruritus</u>

Substances*	Amount†	Concentrations	Pruritus episodes‡
Histamine	0.05 mg	1 mg mL ⁻¹	1
Serotonin	0.013 mg	0.25 mg mL ⁻¹	6
	0.050 mg	1.00 mg mL ⁻¹	0
	0.125 mg	2.50 mg mL ⁻¹	6
Tryptase	0.1 ng	2 ng mL ⁻¹	2
(human lung)	0.4 ng	8 ng mL ⁻¹	6
	1.0 ng	20 ng mL ⁻¹	0
Substance P	0.337 μg	6.74 μg mL ⁻¹	0
	1.348 µg	26.96 µg mL ⁻¹	0
	3.370 µg	67.4 μg mL ⁻¹	0
IL-2 (human	0.02 mg	0.40 mg mL ⁻¹	0, 1§
recombinant)	0.08 mg	1.60 mg mL ⁻¹	1
Saline	NA	0.9%	10
Baseline	NA	NA	2

Neurogenic Inflammation

Neuropeptides – Nerve Growth Factor

neomed-clinic.com

Neuropeptides – Nerve Growth Factor

Neurogenic Itch Sensation (Sensitive Skin)

Neurogenic Itch Sensation by IL-31?

Mouse DRG neurons

Control

IL-31

✓ mIL-31 promotes axonal growth of DRG neurons

Proteases

*PARs: protease-activated receptors

Does Protease Induce Pruritus in Dogs?

Wheal & Erythema

Substances*	Concentrations	Wheal 20 min†	Erythema 20 min†	Erythema 24 h†
Histamine	1 mg mL ⁻¹	•	++	+
Serotonin	0.25 mg mL ⁻¹	• (4 of	++ (3 of 5 dogs)	_
		5 dogs)		
	1.00 mg mL ⁻¹	•	++	-
	2.50 mg mL ⁻¹	•	+++	NR
Tryptase	2 ng mL ⁻¹	_	-	-
(human lung)	8 ng mL ⁻¹	-	-	-
	20 ng mL ⁻¹	-	-	NR
Substance P	6.74 μg mL ^{−1}	_	-	-
	26.96 µg mL ⁻¹	_	+ (3 of 5 dogs)	-
	67.4 µg mL ^{−1}	• (1 of	+ (3 of 5 dogs)	NR
		5 dogs)		
IL-2 (human	0.40 mg mL ⁻¹	-	-	+ (4 of
recombinant)				5 dogs)
	1.60 mg mL ⁻¹	_	++ (4 of 5 dogs)	++
Saline	0.9%	_	_	_

Substances*	Amount†	Concentrations	Pruritus episodes‡
Histamine	0.05 mg	1 mg mL ⁻¹	1
Serotonin	0.013 mg	0.25 mg mL ⁻¹	6
	0.050 mg	1.00 mg mL ⁻¹	0
	0.125 mg	2.50 mg mL ⁻¹	6
Tryptase	0.1 ng	2 ng mL ⁻¹	2
(human lung)	0.4 ng	8 ng mL ⁻¹	6
	1.0 ng	20 ng mL ⁻¹	0
Substance P	0.337 μg	6.74 μg mL ^{−1}	0
	1.348 µg	26.96 µg mL ⁻¹	0
	3.370 µg	67.4 μg mL ⁻¹	0
IL-2 (human	0.02 mg	0.40 mg mL ⁻¹	0,1§
recombinant)	0.08 mg	1.60 mg mL ⁻¹	1
Saline	NA	0.9%	10
Baseline	NA	NA	2

Pruritus

Quiz!

- 3. Which of the following cytokine has been demonstrated to cause itch in dogs and cats?
- a. TSLP
- b. IL-2
- c. IL-31
- d. IL-33

Acute severe itch

Gonzales. 2013. *Vet Dermatol* Fleck. 2019. *NAVDF*

IL-31 Producing Cells in Canine AD Skin

----- Epidermal-dermal borderline

IL-31⁺CD3⁺ = 91-100%

IL-31⁺CD4⁺ = 63-100%

✓ CD3⁺CD4⁺ T cells (likely Th2 cells) produce IL-31

Keratinocytes Produce IL-31?

Shiomitsu. 2021. Res Vet Sci

Cornelissen. 2011. Br J Dermatol

Cevikbas. 2014. J Allergy Clin Immunol Tamamoto-Mochizuki. 2019. Vet Dermatol

Which Cells Receive IL-31 Signals?

IL-31RA receptor

Which Cells Receive IL-31 Signals?

IL-31RA (+) neurons in canine DRGs

Bammert. 2016. WCVD

Canine nasal planum **<u>B3-tubulin**</u> (nerve marker) IL-31RA (IL-31 receptor)

Tamamoto-Mochizuki. 2021. Vet Dermatol

Which else Cells Receive IL-31 Signals?

IL-31RA IHC: Human AD epidermis

IL-31RA IF: Canine AD epidermis

Before AD flare IL-31RA (+)

After AD flare IL-31RA (+)

✓ IL-31RA was constitutively expressed on keratinocytes

IL-31 in Feline Atopic Skin Syndrome

IL-31/IL-31RA mRNA in situ hybridization

Extremely low expression

Itch-Scratch-Itch Cycle

TRP in Itch Neuronal Pathway

Quiz!

4. Which of the following molecule is responsive for neurogenic inflammation?

- a. Substance P
- b. TRPV1
- c. Tryptase
- d. IL-31

3. Diagnosis of Neuropathic/Psychogenic Skin Diseases

Neuropathic Itch – Canine Syringomyelia (SM)

"Phantom scratching" = Dysesthesia
: spontaneous or evoked unpleasant sensation

- Breeds CKCS
- Causes Alteration of sensory threshold? (spongy degenerative change of spinal cords)
- Diagnosis Clinical presentation, MRI

Neuropathic Itch – Canine Syringomyelia (SM)

- 9 CKCS with SM + phantom scratching
- 20 control dogs

Mechanical sensory threshold (MST)

(a)	Cases	Controls	Р
Median MST	0.9 (0.06–175.7 [175.1])	0.24 (0.02–175.2 [5.1])	0.25
Initial MST	0.6 (0.04–350 [349.8])	0.16 (0.02–10 [0.3])	0.09
Contralateral MST	0.4 (0.04–15 [1.3])	0.07 (0.02–350 [5.3])	0.99

No difference between SM and control dogs = <u>No difference in sensory thresholds</u>

Neuropathic Itch – Canine Syringomyelia (SM)

Canine spinal cord tissues: CKCS + SM (symptomatic/asymptomatic)

Significant difference of **SP** between symptomatic SM and control dogs (No difference between symptomatic and asymptomatic)

Neuropathic Itch – Acral Mutilation Syndrome

Cause

- *autosomal-recessive* sensory neuropathy (diminution of pain perception)
- Clinical presentation
 - sudden intense licking \rightarrow auto-amputation
- Breeds German short-haired pointer, English springer spaniel, English/French spaniel
- Mean age 4 months
- Diagnosis by clinical signs
- Prognosis poor

Reduced number of neurons

Neuropathic Itch – Acral Mutilation Syndrome

• SNP mutations at lincRNA upstream of *GDNF* = <u>GDNF-AS</u>

Dog Genome (canFam3)

GDNF (glial cell derived neurotrophic factor)

: a small protein that promotes the survival of many types of neurons

LincRNA (long noncoding RNA)

: >200 nucleotides at intron (not translated) that might regulate gene expression

Neuropathic Itch – Tail Dock Neuroma

• Regenerative growth of nerves (neuroma) \rightarrow pain \rightarrow tail biting

Neuropathic Itch – Tail Dock Neuroma

Tail docking by a hot iron

Variables Docked tails *P*-value Intact tails Number of animals 18 47 *P* < 0.001 % of tails with neuromas 64 0 Number of neuromas per tail 1.0 ± 0.2 P<0.001 0 Mean size of neuromas (µm) 1023 ± 592 *P* < 0.001 0 75% 50% 25% Variables left left left s.d. *P*-value Number of animals n = 17 n = 19 n = 11% of tails with neuromas 53 74 64 ns Number of neuromas per tail 0.8 1.3 1.0 1.1 ns Mean size of neuromas (µm) 797 1080 1119 592 ns

• Tail docking neuroma in piglets

Neuropathic Itch – Radiculopathy

<u>Disturbances</u> at the <u>somatosensory system</u>

Focal NI syndrome

- 1. Trigeminal trophic syndrome (<u>CN V</u>)
- 2. Brachioradial pruritus (C5-C6)
- 3. Notalgia paresthetica (T2-T6)
Neuropathic Itch – Radiculopathy

- Diagnostic imaging (CT, MRI)
- Clinical manifestation

Neuropathic Itch – Radiculopathy

- 7 years old
- Castrated male
- Labrador retriever

Chief complaint

One-month history of **severe localized itch**, unresponsive to glucocorticoid treatment

History

- No prior history of major skin issues
- Self-grooming facility
 - 2 days later
- Severe localized itch
 - Treatment at rDVM
 - Topical/systemic GC
 - Trazodone
 - Oclacitinib
 - Gabapentin (20 mg/kg/d)

C5

Neuropathic Itch

(due to cervical radiculopathy: <u>C3</u>)

Neurogenic/Neuropathic Itch? – FeHV-Associated Dermatitis

• Facial pruritus

 Causes - combination of neurogenic (inflammatory) and neuropathic? itch

FeHV-1 experimental infection in cats

Psychogenic Pruritus

Psychogenic Itch – Acral Lick Dermatitis (ALD)

4. Neoplasia 5. Focal infection 5. Behavioral

For behavioral ALD

- Prevalence 50% of ALD??
- Breeds Large breeds
 - (Doberman pinscher, Great Dane, Labrador retriever, Irish setter, golden retriever, boxer, Weimaraner, German shepherd)
- Median age 4 years old
- Diagnosis by exclusion

Psychogenic Itch – Feline Psychogenic Alopecia

- Causes
- Breeds

- stress-related overgrooming
- Prevalence 1.2 4.7% of itchy cats
 - Siamese, Abyssinian, Asian cats??
- Age

- no predilections
- Diagnosis - by exclusion

Psychogenic Itch – Feline Psychogenic Alopecia

Psychogenic Itch? – Feline Idiopathic Ulceration

CR: all 15 cats

- Causes unknown
 <u>self-induced by stress?</u>
- Clinical presentation
 - non-healing ulceration at dorsal neck and shoulder
- Diagnosis by exclusion

Day 15

Modification of cat environment No medication

Quiz!

- 5. What is the name of gene that is associated with acral mutilation dermatitis in German short-haired pointer?
- a. PNPLA1 Ichthyosis
- d. GDNF Acral mutilation syndrome
- c. FLCN Nodular dermatofibrosis
- d. HAS2 Shar-Pei fever

4. Management of Neuropathic Itch

Neuropathic Itch – Treatment

- No therapies for NI have been approved
- Anti-histamine, glucocorticoids, pain medications
 - ineffective...
- Recommendations:
 - Barriers to reduce scratching
 - Local anesthetics

Steinhoff. 2018. Lancet Neurol

Choice of medications depending on the target level of the nerve system

PNS – Topical Anesthetics

PNS – Topical Capsaicin

Dhaka. 2006. Annu. Rev Neurosci

PNS – Topical Capsaicin

Desensitization of TRPV1 (decreased function of TRPV1) **Functional inhibition of axonal terminals** (inhibition of action potential firings) Structural changes of axonal termianls (ablation of axonal terminals)

PNS – Topical Capsaicin

- 12 AD dogs
- 0.025% topical capsaicin, q12h, for 6 weeks

PNS – Topical TRPM8 Agonist

PNS – Topical TRPM8 Agonist

Excitation of A δ fibers by TRPM8 (cold) inhibits the signaling of C fibers (itch)

PNS – Topical TRPM8 Agonist

9 AD dogs
2% topical cryosin-1 q12h, for 7 days

No significant difference between two treatment groups

Baswan. 2020. Clin Cosmet Investing Dermatol; Miragliotta. 2018. Vet Dermatol

19 experimental AD dogs
Topical endocannabinoid reuptake inhibitor, q12-24h

Inhibitor group

- Significant reduction of pruritus compared to the baseline (Day 8)
- No difference with placebo

40

0.00 -

0

20

Days after methylprednisolone withdrawn

Placebo

60

100

PEA-um

80

PNS & CNS – Opioid Receptors

Different opioid receptors

PNS & CNS – Opioid Receptors

Placebo

- Naltrexone (µ-opioid antagonist)
 - Positive response in acral lick dermatitis
- Asimadoline (κ-opioid agonist)
 - 14 experimental AD dogs
 - 1% topical asimadoline, 4 weeks

PNS – Anti-NGF mAb

PNS & CNS – Maropitant (NK-1R inhibitor)

- 12 AD cats (open-labeled, uncontrolled pilot study)
- Maropitant 2 mg/kg, q24h for 4 weeks

CNS – Gabapentin

CNS – Gabapentin

- 48 CKCS dogs w/ Chiari-like malformation +/- syringomyelia (retro study)
- Gabapentin 10 mg/kg q8-12h or Pregabalin (2-4 mg/kg, q8h) +/- carprofen treated (n = 39) or no treatment (n = 9)

Systemic Drug – NMDA Receptor Antagonist

*NMDA: N-methyl D-aspartate

Harte. 2020. Pract Diabetes

CNS – Topiramate

- Feline idiopathic ulceration
- **Topiramate** (5 mg/kg, q12h)

4 weeks later

Systemic Drug – SSRI

• Selective serotonin reuptake inhibitor (SSRI)

*TCA: tricyclic antidepressant

- Amitriptyline (TCA)
- Clomipramine (TCA)
- Doxepin (TCA)
- Fluoxetine
- Acral lick dermatitis
- cAD?

Any Questions?

Chie Tamamoto-Mochizuki cmochiz@ncsu.edu

