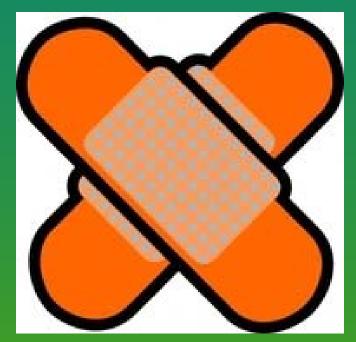
Wound Healing and Repair

Colleen L. Mendelsohn, DVM, DACVD Animal Dermatology Clinic 2965 Edinger Avenue – Tustin, CA 92780 CMendelsohn@adcmg.com



Clinical Relevance

- Understanding the literature
- Various products and therapeutics – Rx and OTC
 – Client Questions
 – New products
- Surgery Consults

 Bandaging

Studying This Topic

- Once you have studied the basic structure and function:
 - Epithelium keratinization
 - Dermis collagen
 - BMZ
 - Vessels and nerves
 - Adhesion molecules
 - Cytokines
- NOW JUST PUT IT IN MOTION!

Let's Build

- Construction

 Numerous parts
 Simultaneous
 Overlap
- What about your practice???

The Building/Healing Process – Scarring?

- Multiple redundancies, rapid inflammation
- For the <u>dermis</u> scar formation is the endpoint
- Inflammation required in order for this to happen rapidly
- Scar formation may be the price we have to pay!

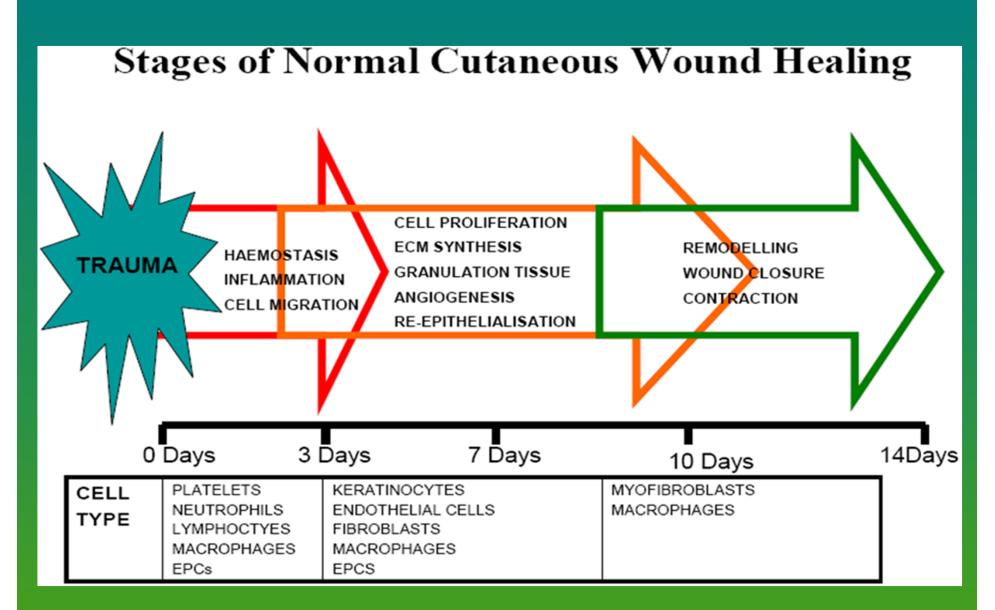
Is it Wound Healing or Repair?

• Def: Repair

"To restore to a sound or healthy state" (fibroblasts) Vs.

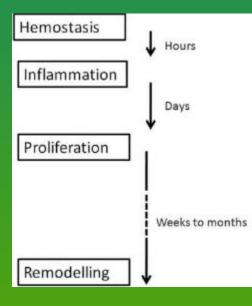
• Def: Heal

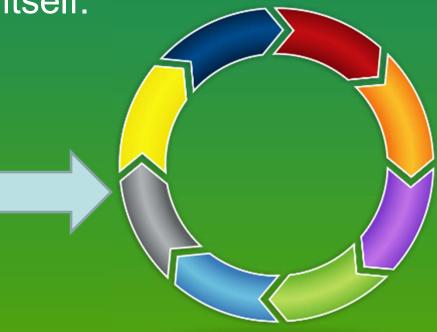
"To restore to original purity or integrity" (keratinocytes & endothelia)



Introduction

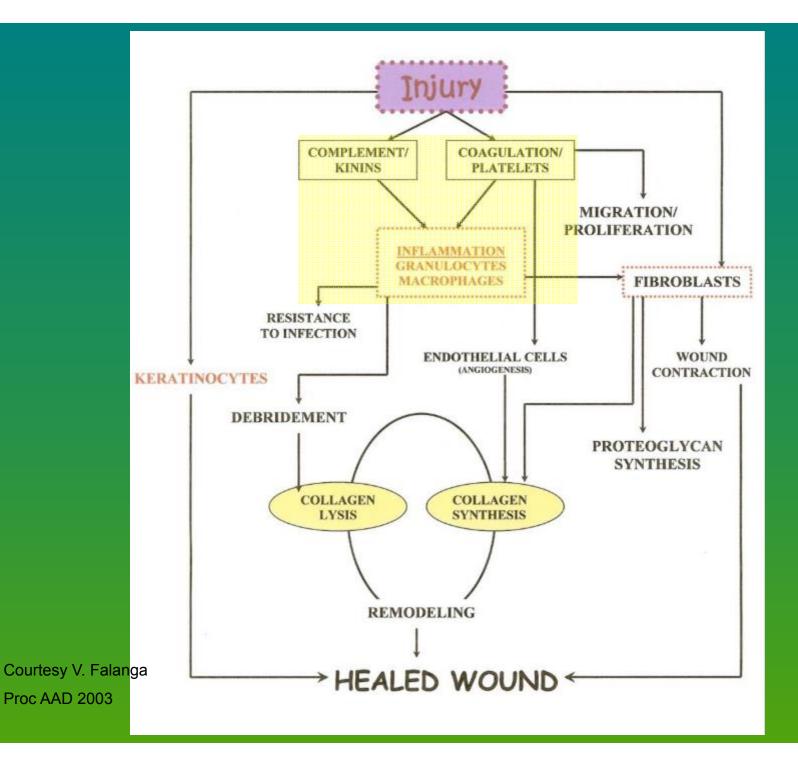
Four Phases (or is it three???)
Coagulation/Inflammation
Tissue Formation
Scarring/Remodeling




- EPCS = Endothelial Progenitor Cells
- From www.intechopen.com

When things go wrong..

- Normal wound healing has a mostly linear progression through the phases
- Chronic wounds go through the processes in a jumbled more cyclic fashion with the cycle continuing to feed on itself.



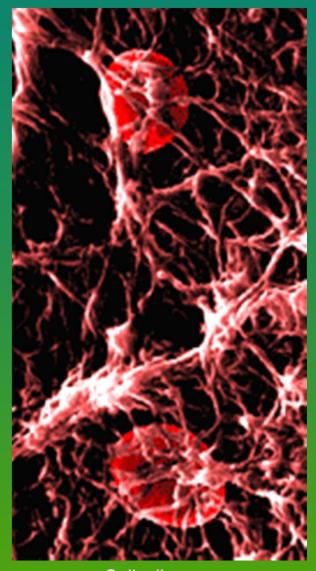
Introduction

- Coagulation/Inflammation
 - Platelets
 - Neutrophils
 - Macrophages
 - Mast Cell
- Tissue Formation
 - Macrophages
 - Fibroblasts
 - Keratinocytes
 - Endothelial cell
 - Mast Cell

- Scarring/Remodeling
 Myofibroblasts
 - Enzymes
 - MMP's
 - Serine proteases
 - Mast Cell
 - T-cells

Coagulation/Inflammation

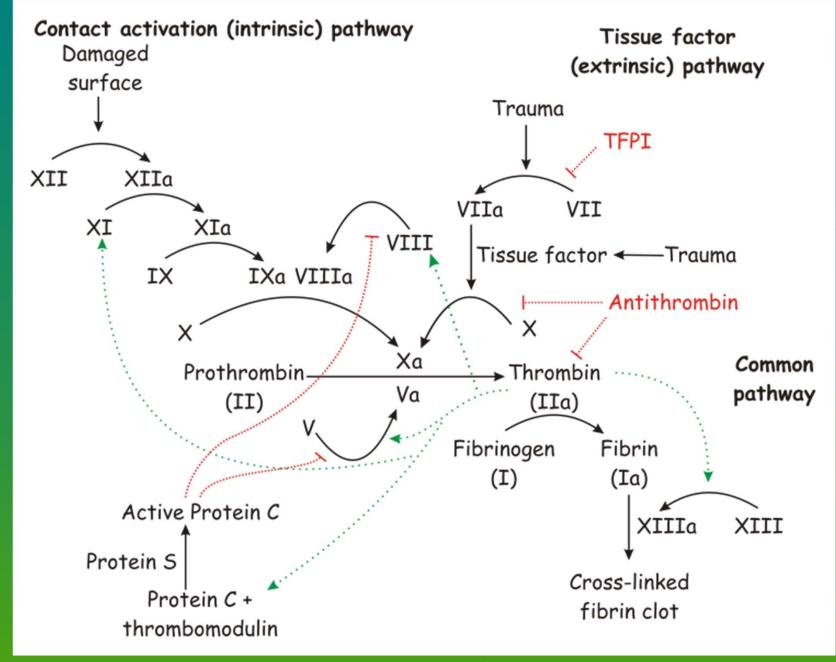
Important processes


- Fibrin Clot & Platelet Aggregation
- Neutrophil cleansing of the wound
- Macrophage debridement and cleansing

What does the clot do?

• The clot

- Allows for movement of inflammatory cells and newly forming vessels into the wound
- Provides scaffold for organization of provisional matrix

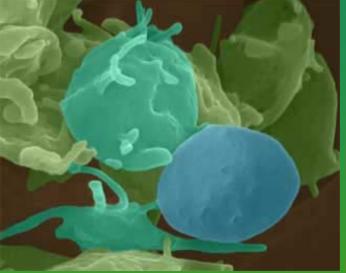

Cellsalive.com

What starts the process?

• Clotting results from:

- Surface activation of Hageman factor XII
- Tissue "Pro-coagulant" released from the damaged cells
- Coagulations factors released from activated platelets and endothelial cells

The Fibrin Clot

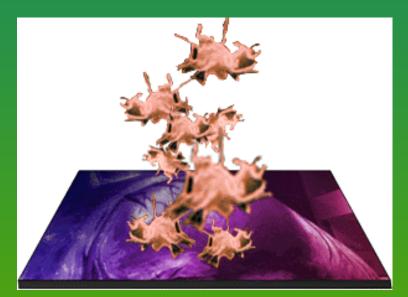

Platelets

Platelets

Platelets become activated when exposed to thrombin and fibrillar collagen

Once activated they release

- Fibrinogen
- Fibronectin
- Thrombospondin
- Von Willebrands Factor



www.bus.lsu.edu

Platelets – Cytokine profile

- Platelets also release:
 - PDGF
 - $-TGF-\beta 1$
 - Most important storage factor for this cytokine
 - -PAF
 - Serotonin

sln.fi.edu/biosci/ blood/platelet.html

How do we stop the clot??

- Stimuli for formation is diluted
- Adjacent vessel production of prostacyclin and protein C which inhibits clot formation
 - Degrade Factors V and VIII
- Adjacent vessel release of plasminogen activator
 - Clot lysis
 - Convert plasminogen to plasmin

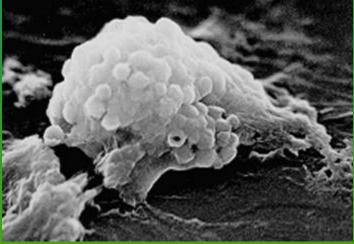
Inflammation

Initiation of Inflammation

- Activation of Hageman factor will lead to generation of bradykinin fragments which will initiates the complement cascades
- Complement cascades will release C3a and C5a which will call neutrophils and monocytes and increase vessel permeability
- The neutrophils, macrophages and mast cells will further attract more.

Inflammation

- Neutrophils
 - Start acting first
 - Chemoattractants for neutrophils
 - IL-8
 - Gro
 - Kallikrein
 - FDP's and fibrinopeptides
 - Platelet released cytokines
 - Bacterial proteins (bacterial cleavage)



Inflammation

Neutrophils Con't

- Neutrophils normally "roll" along the endothelial cells
 - Sialyl Lewis X carbohydrate residue binding to E- or Pselectin on endothelial cells
- Chemoattractant factors simulate LFA-1 expression on neutrophils
 - Adheres to I-CAM and V-CAM on endothelial cells

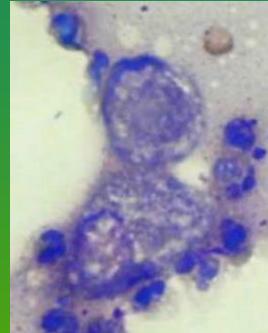
www.medfak.ni.ac.yu

Inflammation - Neutrophils

- Neutrophils Con't Primary Role:
 - Phagocytosis and intracellular killing of contaminating bacteria
 - Persistently contaminated wounds
 - Role in sterile wounds?
 - Release cytokines for early activation of local fibroblasts

Inflammation - Macrophages

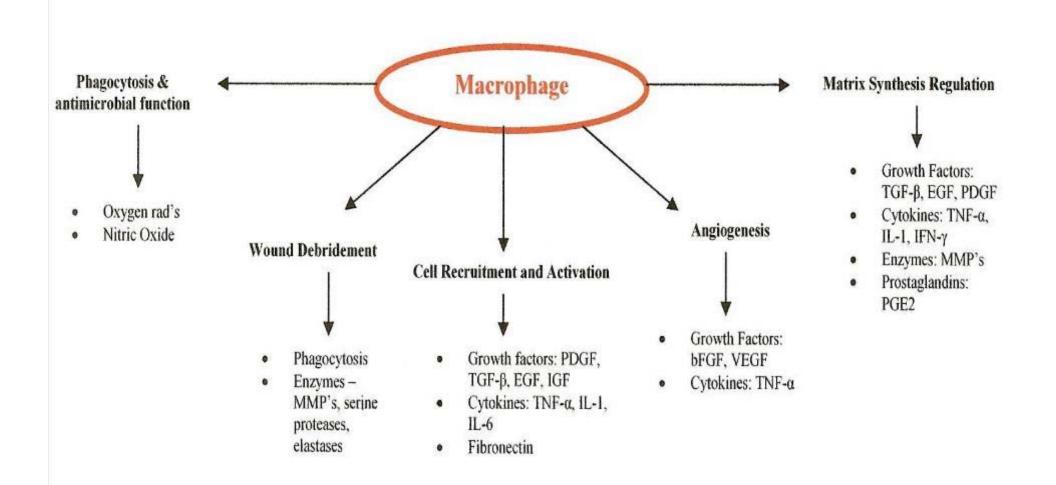
 Monocytes/Macrophages


 Arrival represents transition from inflammation to repair
 Within 24-48 hours should replace neutrophils as predominant cell

www.people.vcu.edu

Macrophages

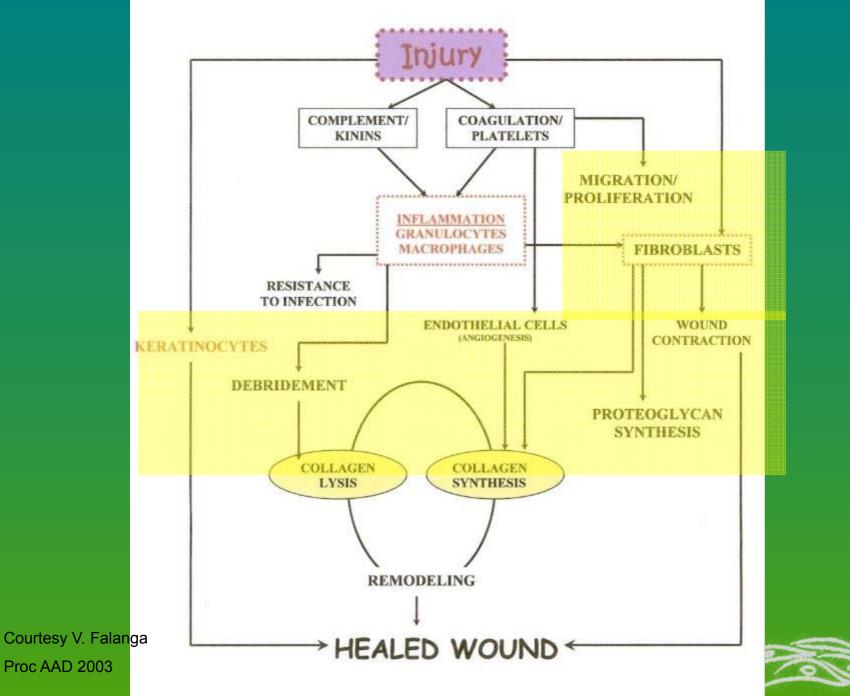
Chemoattractants for Monocytes/Macrophages:
Same as neutrophils – Plus:
Collagen fragments
Elastin fragments
Fibronectin
TGF-β1

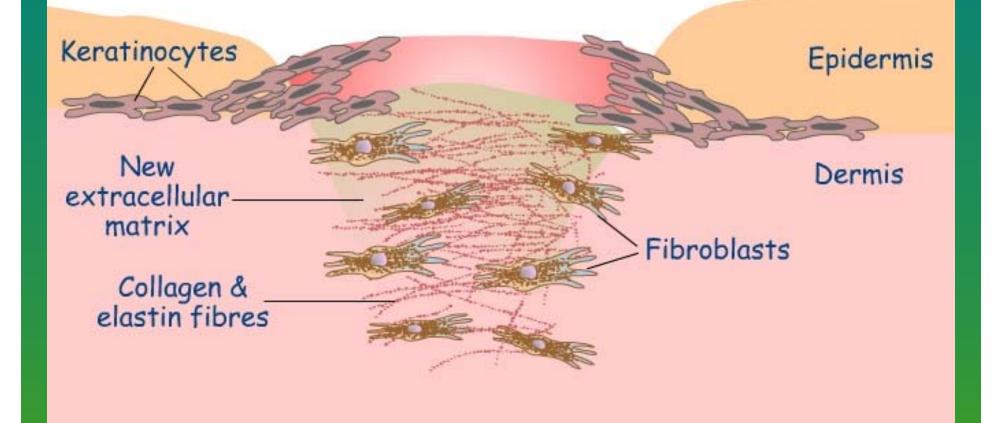


Inflammation

- -Actions include
 - Phagocytosis and killing of bacteria
 - Removal of effete neutrophils
 - Scavenge tissue debris
 - Growth Factor release recruit and activate fibroblasts
 - PDGF
 - -FGF
 - –TGF-β1

-Removed via apoptosis





Is Inflammation Necessary?

- How essential is inflammation?
 - Early studies show failure to heal with steroids and anti-macrophage serum
 - More recent studies have healing without an inflammatory infiltrate (knock out)
 - Exaggerated inflammation detrimental to healing
 - Fetal cells are less permissive to neutrophil diapedesis than adult cells

Proliferation and Tissue Formation

- Factors affecting/guiding this phase:
 - Tissue hypoxia (Negative pressure vs. hyperbaric O2 therapy)
 - Adhesion proteins
 - ECM components
 - Action of inflammatory cells
- These factors guide the activation and migration of fibroblasts, keratinocytes and endothelial cells

Effects of Hypoxia on Healing

- Effects of hypoxia/low oxygen tension (Negative pressure therapy):
 - Activate fibroblasts and endothelial cells
 - Stimulate macrophage to release angiogenic factors (bFGF)
 - Bandaging techniques help us enhance this effect
- Cyclical oxygenation/hypoxia oxygen radicals

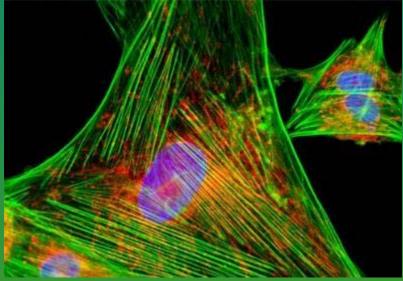
Effects of Hyperoxygenation

- Oxygen is required for all protein synthesis (collagen, elastin, cellular replication) as well as cell movement.
- Oxygen is also required for NO synthesis regulation of angiogenesis.
- Reduction of Radical Oxygen Species (ROS).
 - Superoxide anion radical is <u>the</u> one-electron reduction product of oxygen.
 - Drives endothelial cell signaling such as required during angiogenesis
 - H2O2 breakdown product supports cell migration and proliferation through redox reactions as well as mediate formation of hypochlorous acid in neutrophils.
 - NADPH oxidases represent one major source of superoxide anion radicals at the wound-site - oxidases in phagocytic cells help fight infection.

Fibroplasia - Dermis

- Fibroblast is the main cell of this stage:
 - Formation of granulation tissue and recollagenation of the dermal ECM
 - Substantial phenotypic changes
 - Determined by the ECM and surrounding growth factors and cytokines
 - Some evidence of sub-populations of fibroblasts rather than phenotype change (like mast cells)

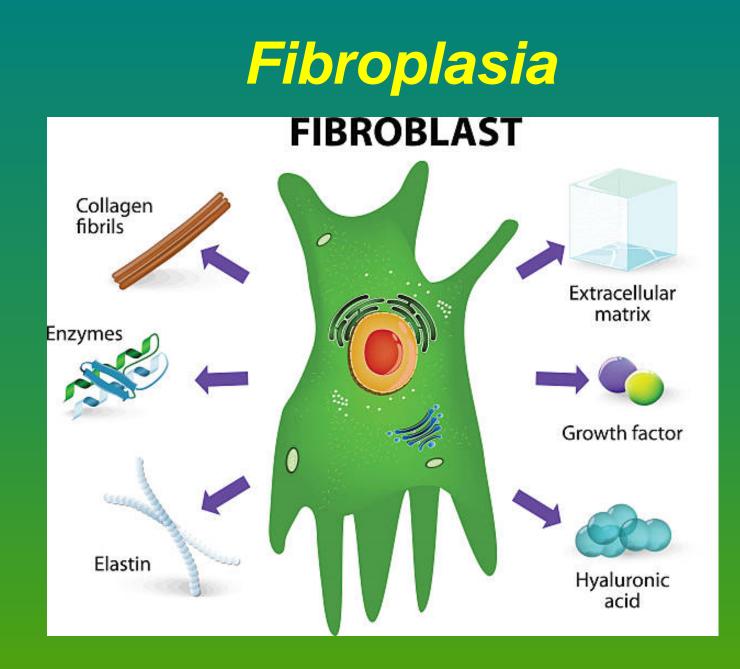
The Fibroblast - activation

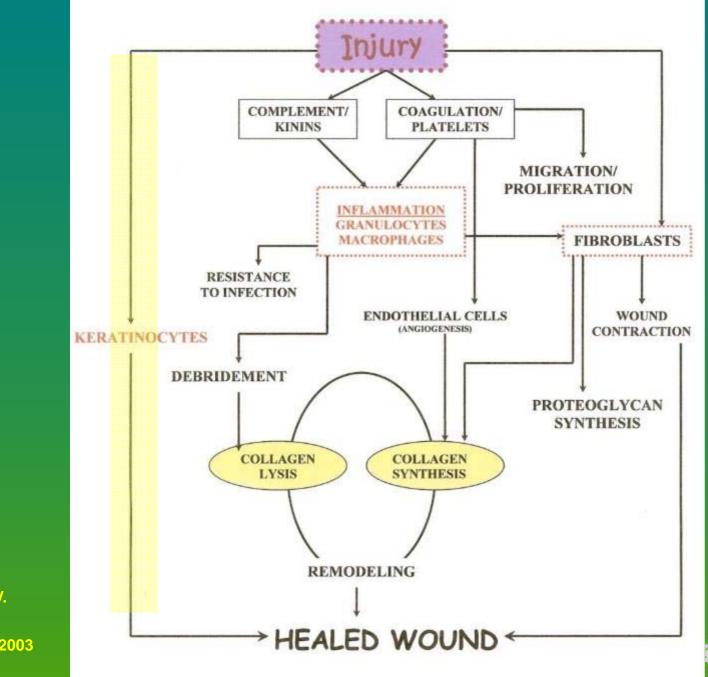

 Resting in a collagen-rich ECM - Biosynthetically inactive – Integrin receptors $\alpha 2$ Start changing phenotype - When exposed to initial provisional matrix – When exposed to PDGF and TGF-β1

The Fibroblast - activation

- When within the fibrin clot:
 - Integrin receptors α3, α5 & αν upregulated
 - Actino-myosin cytoskeleton
 - Produce hyaluronan (HA) and RHAMM (HA receptor)
 - Fibronectin
 - Release serine proteases and MMP's

micro.magnet.fsu.edu




Fibroplasia

- In the first phase fibroblasts produce a "loose" ECM of fibronectin and HA
 - Golgi apparatus and plasma membrane

- Secondly Collagen and proteoglycans (RER production)
 - IL-4 potent stimulator of collagen synthesis switch (Mast cells)

Courtesy V. Falanga Proc AAD 2003

- Reestablishment of epithelial cover
 - Starts within hours of injury
 - Start from either wound edge or from remaining adnexal structures
 - Continuous action throughout the phases of healing

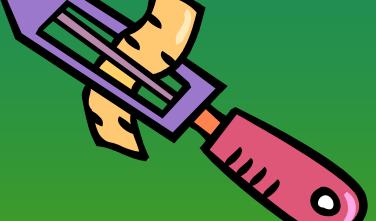
- Keratinocytes migrate in "leap frog" fashion
- Keratinocytes adherent to ECM stay stationary and migrating keratinocytes are the overlying ones

– Keratinocytes do not migrate over intact BMZ

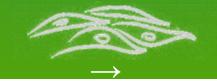
 Erosions – fibrin and fibronectin will penetrate the BMZ

– Provisional matrix KC's can migrate over:

- Collagen I
- Collagen III
- Collagen V
- Fibronectin
- Fibrin
- Tenascin
- Vitronectin



 Migrating KC's cannot bind to denatured collagen or denatured fibrin - wound dissection – "peeling off" the eschar.


Once migration has started – BMZ will follow in "zipper" like fashion

Phenotypic changes for migration

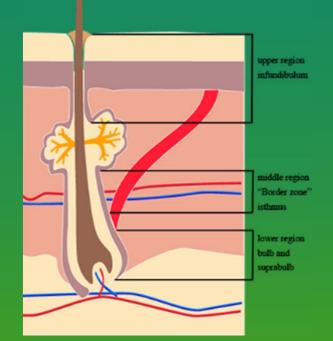
- Retract tonofilaments actin (detachment)
- Dissolve desmosomes and hemidesmosomes (detachment)
- Increase gap junctions (enhanced cellular communication)
- Peripheral actin filaments and formation of lamellipodia (motor apparatus)

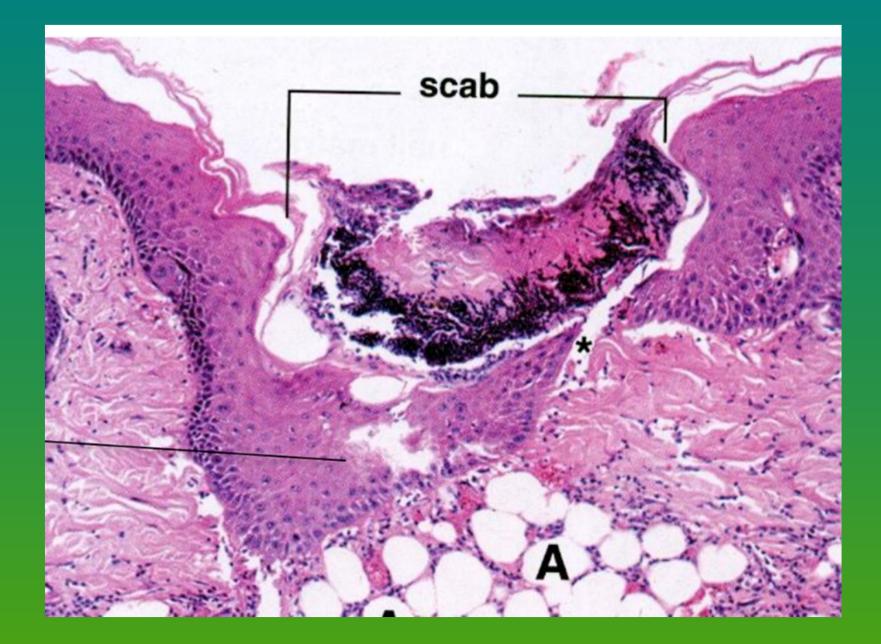
- Phenotypic changes for migration (con't)
 - KC's express keratins 5&14 as well as 6&16
 - Express serine proteases (plasminogen activators eg.) and MMP's (collagenases) (dissection through the wound)

- Phenotypic changes for migration (con't)
 - Express integrins that allow attachment to the provisional matrix
 - -α5β1 and αvβ6: attachment to fibronectin
 - $-\alpha v\beta 5$: attachment to vitronectin
 - $-\alpha 2\beta 1$: attachment to collagen matrix

- Primary signal that stops KC migration is reconstitution of laminin within the BMZ
 - Large glycoprotein, prevent direct contact between KC's and collagens within BMZ and dermis
- Proliferation begins 1-2 days after injury
 - Likely absence of neighbor cells and growth factors are primary stimulators for proliferation
 - Proliferation and migration are independent of each other (TGF-β1 promotes migration – no effect on proliferation)

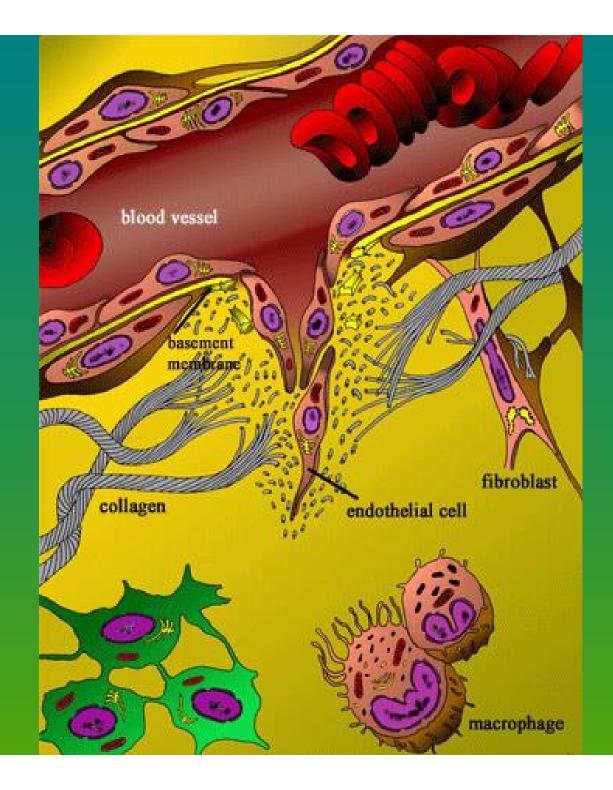
Proliferation and Tissue Formation Keratinization – Hair Follicle

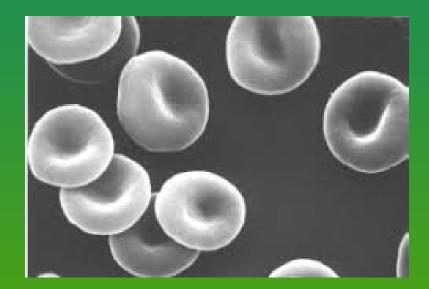

- Humans: Haired skin heals faster than nonhaired skin
- Mouse studies: HF contributes during acute phase of healing



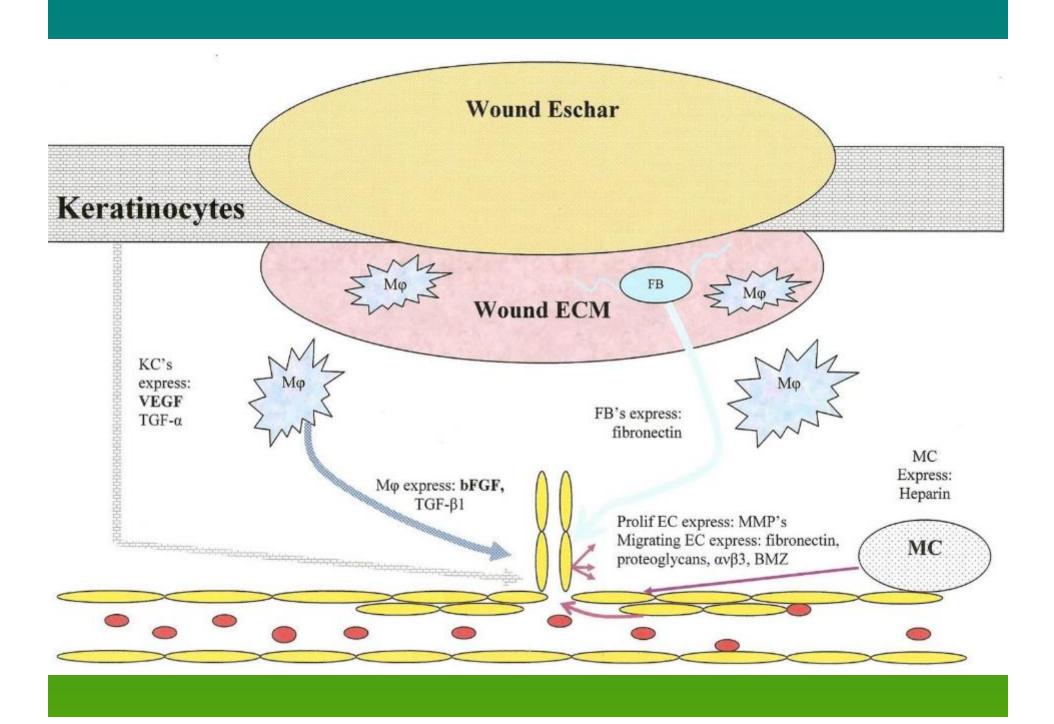
Proliferation and Tissue Formation Keratinization – Hair Follicle

- Bulge Region:
 - 25% of KC's in newly healed mouse wound from bulge
 - Destined to become transient amplifying cells
 - Lost several weeks later
- Infundibulum/Upper Isthmus:
 - Become permanent stem cell residents of epidermis


- Angiogenesis depends on 4 related events:
 - Mitogenic stimulation
 - Endothelial cell phenotype alteration
 - Chemoattractant-driven
 migration
 - Appropriate extracellular matrix



- Macrophages (and platelets) release basic fibroblast growth factor (bFGF).
 - This will result in MMP (collagenase I) production by endothelial cells which will degrade the BM – allowing migration
 - bFGF stimulates migration of endothelial cells out of the fragmented BM


- Endothelial chemoattractants:
 - Keratinocytes and platelets:
 - vascular endothelial growth factor (VEGF), TGF- α
 - Macrophages and platelets:
 - bFGF, TGF-β1
 - ECM/fibroblasts:
 - fibronectin
 - Mast cells:
 - heparin

• Endothelial cells' actions:

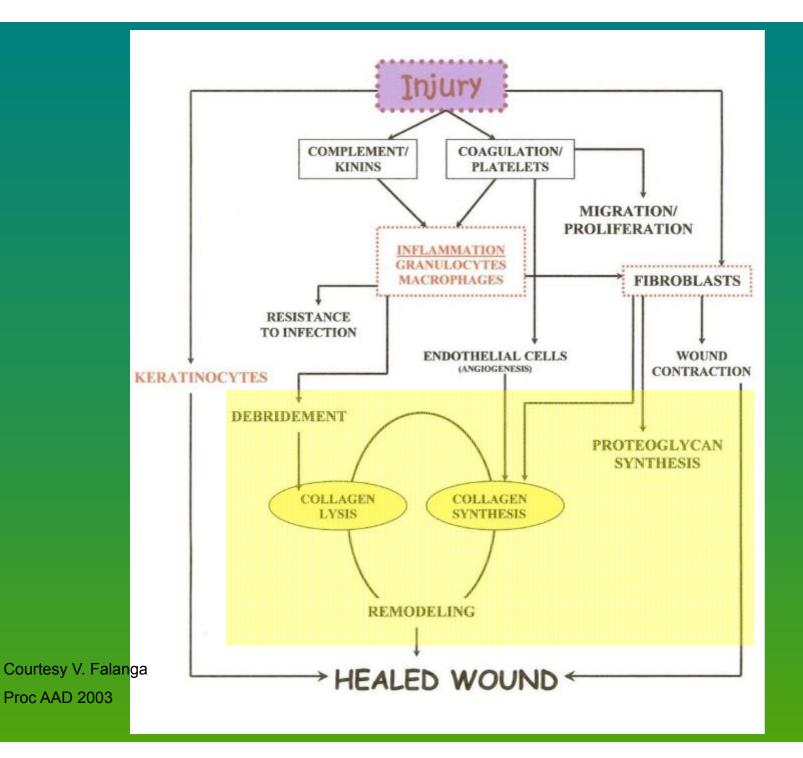
- Produce their own ECM (initially) fibronectin and proteoglycans
- Express $\alpha v\beta 3$
 - Adhesion to fibrinogen, fibrin, and Factor VIII (vWF)
- Produce their own BM

Proliferation and Tissue Formation Reinnervation

- Not a lot of published material
 - Scar tissue and grafts do not regain the innervation of the original tissue
 - Experimental dennervation did have an effect on rat wound healing

www.bitspin.net

Proliferation and Tissue Formation Reinnervation


- Healing adult wounds associated initially with hyperinnervation
 - 300% increase in skin innervation density
 - NGF may mediate
 - Topical NGF accelerate healing in mice – both normal and diabetic

Proliferation and Tissue Formation

- Effects of nerve derived factors on wound healing:
 - Substance P enhances release of IL-1 and TNF- α from mast cells
 - Substance P and K stimulate DNA synthesis in cultured skin fibroblasts
 - Vasoactive intestinal peptide (VIP) enhances
 KC migration
 - Substance P and calcitonin gene-related peptide (CGRP) are increased in hypertrophic scars

I saw the angel in the marble and carved until I set him free.

Michelangelo

Breathe.Smile.Succeed.The B-Well

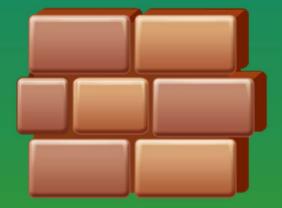
Remodeling

- Remodeling of the ECM
 - Process that continues for months
 - Reorganization of the tissue
 - High degree of overlap with other phases of wound healing
 - Scar attains approximately 70% of the strength of the original tissue repaired
 - Apoptosis and action of MMP's are essential for necessary cellular reduction in the wound

Extracellular Matrices

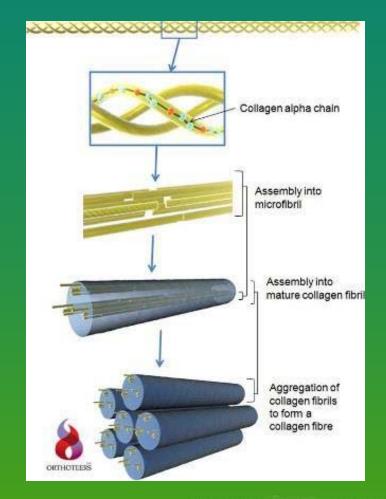
- Roles of ECM:
 - Form structure and strength
 - Cell-matrix interactions
 - Cellular phenotype
 - Cell polarity
 - Cell adhesion and migration
 - Scaffold for migration
 - Cell recruitment: inflammatory cells, epithelial cells, endothelial cells
 - Interactions with other components in matrix:
 - Growth factors
 - Proteases and MMP's

Extracellular Matrices


- ECM review:
 - Fibrin Clot
 - Derived from fibrinogen
 - Fibrin fibrils interact with platelets via $\alpha 2\beta 3$
 - Fibrin, with PDGF induce fibroblasts to express fibronectin integrins

Extracellular Matrices -Fibronectin

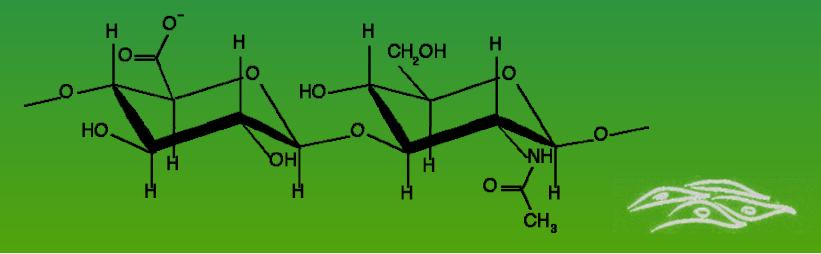
– Fibronectin


- Second provisional matrix
- Multifunctional cell adhesion protein found in blood and other tissues
- Binds fibrin and found even in the early fibrin clot
- Supports movement of fibroblasts, keratinocytes and endothelial cells
- Opsonizes ECM debris so can be phagocytosed
- Template for collagen fibril organization

Extracellular Matrices - Collagen

- Collagen I & III are the primary collagens in wound repair
- Collagen III is first present and synthesized and increased in granulation tissue
- Collagen I is made later starting at about day 5
- Type V collagen increased during angiogenesis and in highly vascular scars

Extracellular Matrices - Collagen


- Collagens (con't):
 - Intact collagen affects phenotype and function of various cell types
 - Primarily via regulation of expression of integrin receptors
 - By week three 20% of final wound strength
 - Now additional strength gained by remodeling not new collagen deposition

Extracellular Matrices – GAG's

- Glycosaminoglycans (GAG)
 - All GAG's are repeating hexosamine and an acidic sugar
 - Highly polar and attract water
 - Shock absorption, lubrication, storage
 - Hyaluronan and heparin
 - Proteoglycans (Sulfated GAG macromolecules: dermatan sulfate, chondroitin sulfate, keratin sulfate, heparin sulfate

Extracellular Matrices - HA

- Hyaluronan hyaluronic acid (HA)
 - HA unique synthesized at plasma membrane (large molecule)
 - Linear polymer of repeating N-acetyl glucosamine-glucuronic acid disaccharides

Healthy granulation tissue in a surgically created wound. HA gives the "glistening" appearance of the wound

Extracellular Matrices - HA

 Component of early granulation tissue
 Concentration increases early then drops between days 5-10 (hyaluronidase) and then remains stable while proteoglycan (sulfated GAG's) concentration increases

Fetal wounds do not decrease their HA levels

Extracellular Matrices - HA

– Two HA receptors:

- CD44 widely distributed
 - Involved in attachment, uptake and breakdown of HA
 - Fibroblasts from hypertrophic scars and scleroderma shown to have increased CD44 on their membranes
- RHAMM found on macrophages and fibroblasts
 - Essential for motility of macrophages and fibroblasts

 Proteoglycans

 Contain a protein core to which one or more GAG's are covalently bound
 Huge range of versatile molecules

– Roles of Proteoglycans:

- Water storage
- Extracellular organization
- Growth factor storage
- Promotion of growth factor expression and binding
- Enzyme and autocoid storage in granules
- Regulation of blood coagulation

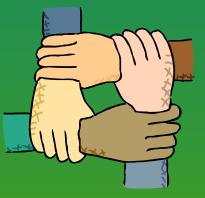
Serglycine from mast cells

- Regulation of coagulation. Interacts with AT-III and inhibits factor Xa (activated thrombokinase) and thrombin (factor IIa)
- Binds histamine and cationic proteases which affect vasopermeability and wound debridement
- Activate matrix metalloproteinases

- Chondroitin-4-sulfate (C4S) and Dermatan Sulfate (DS)
 - Produced by mature scar fibroblasts
 - Structural
 - Regulate collagen fibrillogenesis
 - C4S likely facilitates collagen deposition during matrix formation and remodeling phase
 - C4S is elevated in hypertrophic scars

- Versican

- Promote migration decreases adhesion
- Decorin
 - Inhibit growth of cells in-vitro
- Syndecan family
 - Modulated during wound repair
 - Likely involved in migration, proliferation and gene expression



- Wound Contraction
 - Transition to the 3rd and final phase of wound repair
 - Centripetal or concentric decrease in size of an open wound
 - Dogs clinical contraction 5-9 days after injury

- Wound Contraction (con't)

 TGF-β1 no longer produced, but is still present in the wound as contraction begins
 Fibroblasts assume myofibroblast phenotype
 - Large actin bundles
 - Cell-cell links with adherens jxns
 - Cell-matrix links with integrins
 - $-\alpha 5\beta 1$ to fibronectin
 - $\alpha 2\beta 1$ to collagen

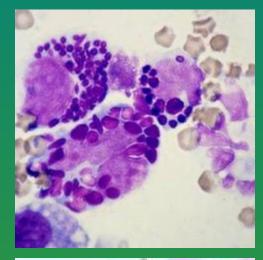


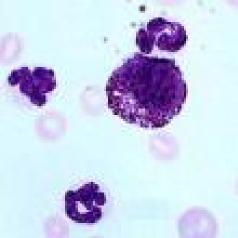
- Wound Contraction (con't)
 - Contraction exerts transmission of force equally across the wound
 - Platelet and macrophage isoforms of PDGF stimulate contraction – <u>fibroblast isoform does</u> <u>not</u>
 - Full thickness wounds contract about 40%
 - Partial thickness contracts much less

Wound Contraction (con't)

- 10th day fibroblasts undergo apoptosis
 - Transition to acellular scar
 - Impaired or decreased apoptosis likely plays a role in hypertrophic scars
 - Human diabetics have increased apoptosis (generalized) also resulting in impaired healing (diabetic foot ulcers)

Collagen Lysis


- MMP's are primary enzymes
- In horses: study by Schwartz et al revealed that distal limb wounds have a significantly decreased MMP-1 (collagenase I) and increased TGF-β1 protein and mRNA as well as increased myofibroblasts and collagen I



Mast Cell - Review

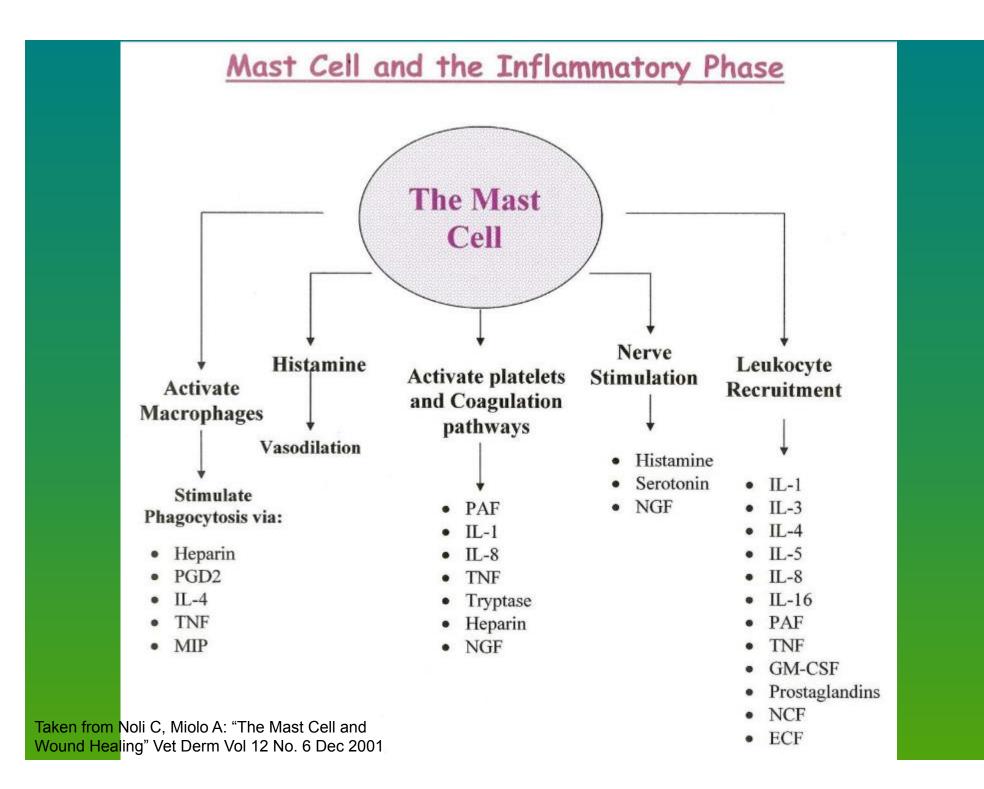
- The Mast Cell

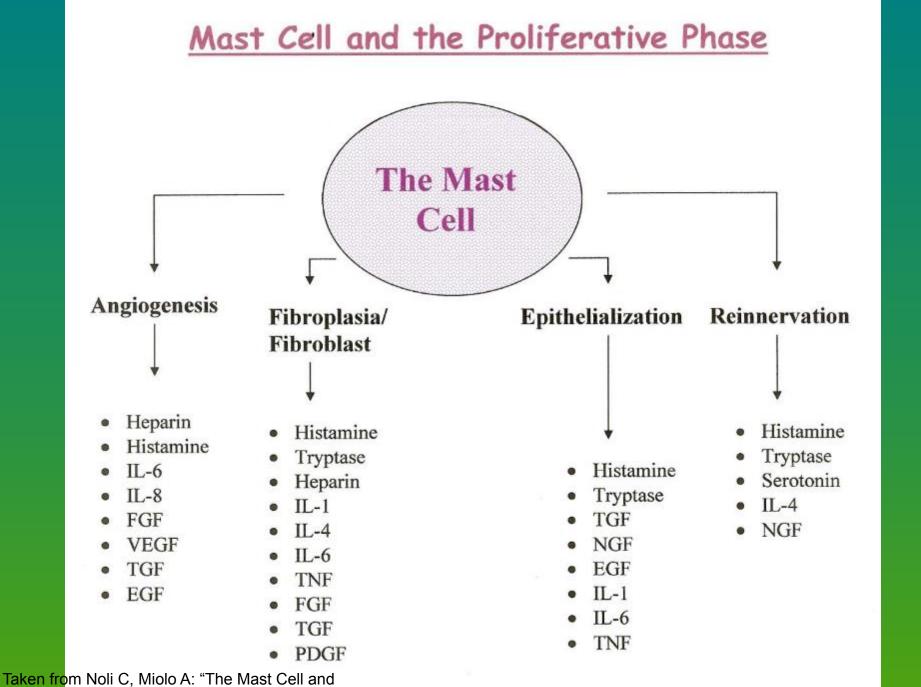
 Involved in all levels
 of wound healing
 - Located near
 endothelial cells and
 nerves adjacent to
 the wound

www.vet.uga.edu

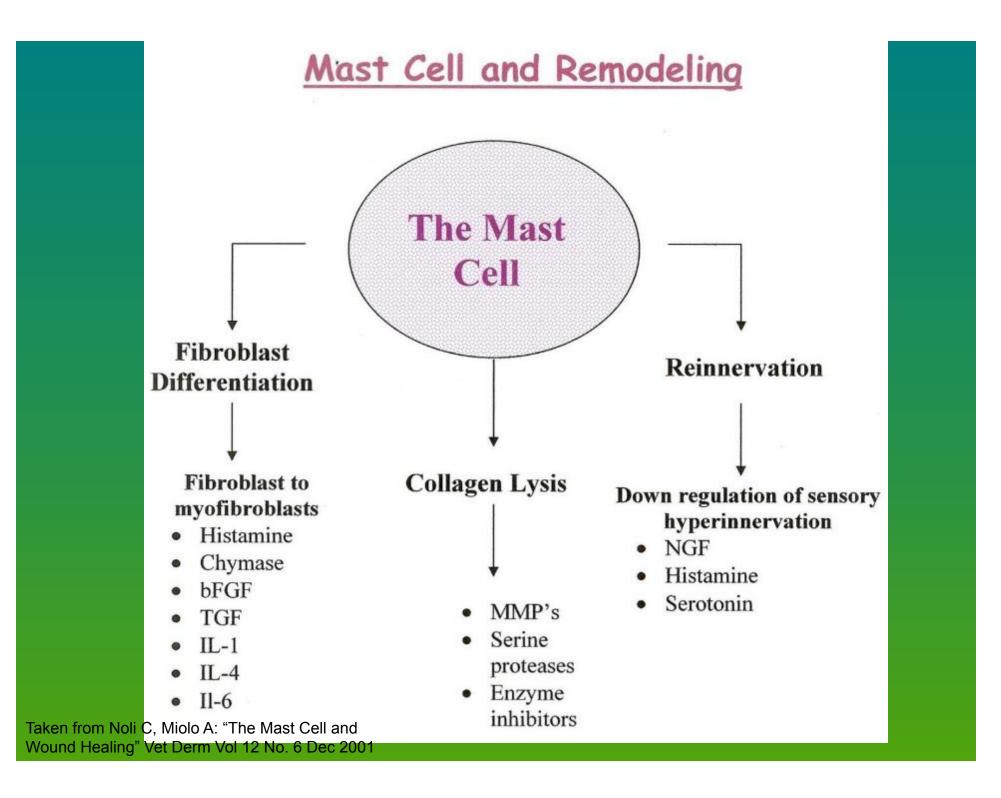
Mast Cell - Review

- Resides adjacent to local microcirculation and nerve endings
- Mobile and will migrate in response to stimuli
 - Physical stimulus sunlight, trauma
 - Immunogenic IgE, complement, cytokines and growth factors
 - Neurogenic neuropeptides
- Cytoplasm filled with metachromatic granules containing biologically active mediators




Mast Cell - Review

- Canine Mast Cell Mediators
 - α-Chymase
 - Tryptase
 - Heparin
 - Protease-3 (MCP-3)
 - Gelatinase (MMP-9)
 - Cathepsin C
 - Histamine
 - TNF


- IL-4
- IL-5
- bFGF
- TGF-β
- PDGF
- SCF
- PDG2

Wound Healing" Vet Derm Vol 12 No. 6 Dec 2001

- Wound healing studied as straight forward process
- Complications <u>usually</u> occur
 - Infection, thrombosis, ischemia, repeated trauma, etc.

- Human Keloids vs. Hypertrophic Scars
 - Keloids:
 - Black individuals predisposed
 - Invasive
 - Abundance of collagen III
 - Problem with proliferative phase
 - Hypertrophic Scars:
 - Genetic factors but not clearly defined
 - Do not tend to be invasive
 - Decreased collagen lysis abundance of collagen I
 - Problem with remodeling phase
 - Both show mast cell hyperplasia

- Equine exuberant granulation tissue
 - Most commonly compared to keloid
 - They are invasive

- TGF-β1 is increased and induces general protein synthesis – this does not occur in keloids
 - In keloids TGF-β1 induces 12-fold increase in ECM matrix formation – but not general protein increase
- Various studies looking at anti TGF-β1 and –β3 serum application to these wounds

Equine exuberant granulation tissue (con't)

 Hypoxia (bandaging) induces the phenomenon
 Application of corticosteroids can decrease excessive inflammation and retard fibroblasts – however will also retard epithelialization, thus extending the problem

- Human diabetic ulcers
 - Chronic non-healing wound
 - Wound "stuck" in proliferative phase with excessive ECM
 - Cells possibly altered unresponsive to growth factors – debridement
 - Hyperglycemia reduces MMP's
 - Macrophages show decreased cytokine release
 - ... PHOTO WARNING....

- Ideal Dressing:
 - Capable of retaining humidity while debris is removed
 - Impermeable to bacteria
 - Allow gas exchange
 - Free of particulates or toxic component

 Provide protection from trauma while preventing self removal

- Ideal Dressing Con't
 - Removable without causing further damage or pain
 - Doesn't require frequent changing
 - Provides thermal insulation
 - Cost effective and long shelf life

- Dressing Types: Each has advantages/disadvantages based on the wound type and location
 - Low-Adherent Dressings
 - Semi-permeable films
 - Hydrocolloids
 - Hydrogels
 - Alginates
 - Foam Dressings
 - Antimicrobial dressings

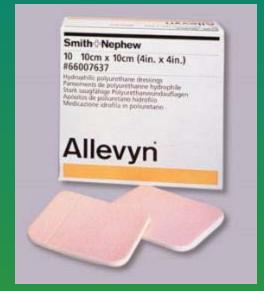
- Low Adherent Dressings
 - Inexpensive
 - Easily available
 - Allows exudate to absorb through a secondary dressing
 - Maintaining a moist wound bed
 - Prevent dressing from adhering to the wound

- Semi-permeable films:
 - Sterile plastic sheets of polyurethane coated acrylic adhesive
 - Primary wound cover
 - Not on highly exudative wounds
 - Impermeable to fluids and bacteria – but permeable to air and water vapor
 - Flexible good for difficult sites

• Hydrocolloids

- Colloids
 - Carboxymethylcelluose
 - Gelatin
 - Pectin
 - Elastomers

- Forms gel on wound surface
 - Gel can be mistaken for pus
- Water/air permeable rehydrate wounds/eschars
- Good for highly exudative wounds


Hydrogels

- Insoluble polymers with 96% water content
 - Provide water to wound
 - Amorphous hydrogels are most commonly used
- Polymers are only partially hydrated, dressing can still absorb wound exudate
- Facilitate self debridement (autolysis)

- Foam Dressings
 - Polyurethane or silicone foam
 - Vapor permeable
 - Thermal insulation

- Hydrophilic wound contact with hydrophobic backing
 - Highly absorbent
- Available as cavity dressing
 - Small chips of hydrophillic polyurethane foam in a perforated polymeric film
 - Contain exudate

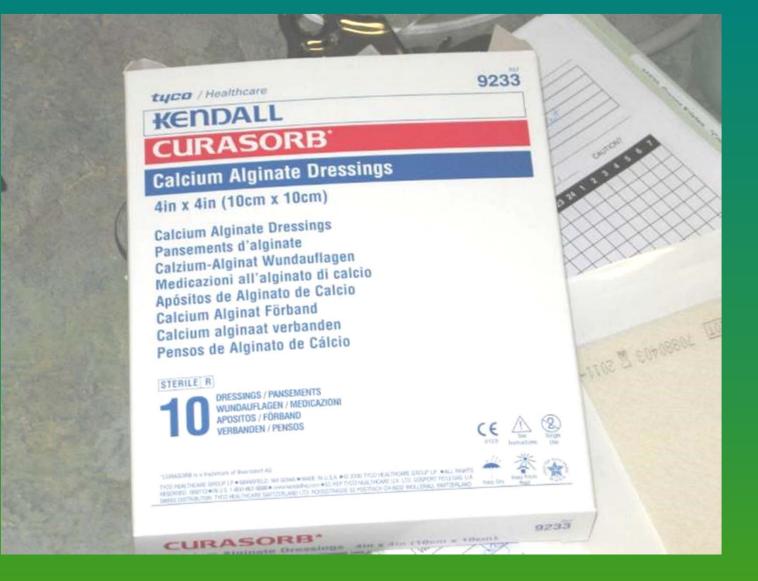
- Antimicrobial dressings:

 Silver
 Povidone iodine
 - Cadexomer iodine
 - Metronidazole

- Alginates:
 - Calcium and Sodium salts of alginic acid found in brown seaweed: *Phaeophyceae*
 - Some all 100% calcium
 - Some 80:20 calcium:sodium
 - All rich in mannuronic or guluronic acid
 - When contact wound fluid forms hydrophillic gel
 - Can be washed off (mannuronic acid) easily or peeled (glucuronic) off
 - Absorb 15 to 20 times their weight in fluid
 - Excellent for exudative wounds

Coco Greene

- 4 mo FI Lab
- Thanksgiving day oil from turkey fryer
- Presented to our surgeons on day 4 after the injury.



and the second

GOOD LUCK

THEY'RE SINGING!!!!

