Small Animal Oncology Basics for the Dermatologist

Carine Laporte, VMD, DACVD

Oncology Basics

1. Re-familiarize with oncology concepts and common terms

2. Specific cutaneous round cell tumor syndromes in dogs and cats

Oncology Basics

Uncontrolled growth of cells leading to a phenotypic expression which can range from mild to life threatening.

Cell Cycle

How does the cell cycle prevent neoplasia?

Checkpoints

1. Cell Growth Checkpoint

- Occurs toward the end of growth phase 1 (G1).
- Checks whether the cell is big enough and has made the proper proteins for the synthesis phase.
- If not, the cell goes through a resting period (G0) until it is ready to divide.

2. DNA Synthesis Checkpoint

- Occurs during the synthesis phase (S).
- Checks whether DNA has been replicated correctly.
- If so, the cell continues on to mitosis (M).

3. Mitosis Checkpoint

- Occurs during the mitosis phase (M).
- Checks whether mitosis is complete.
- If so, the cell divides, and the cycle repeats.

2. Cyclin dependent kinases

3. Anaphase-promoting complex / cyclosome (APC/C)

Checkpoints

Μ

Gı

Go

Chemical and Protein Signals

Chemical and Protein Signals

Growth factors

• Hormones

Growth Factors

Chemical and Protein Signals

Negative Cues

Negative Cues

Prevention of Neoplasia

Prevention of Neoplasia

Development of Neoplasia

How does a cell become Neoplastic?

What kinds of mutations dysregulate the cell cycle?

Multistep process *Multiple mechanisms must fail*

Most cancers are due to series of mutations that make the cells:

- Divide more quickly
- Escape internal and external controls on division
- Avoid programmed cell death

Hypothetical series of events leading to cancer

What kinds of mutations dysregulate the cell cycle?

Proto-oncogene (not mutated) \rightarrow Oncogene (mutated)

- Usually positive cell regulators
- Examples: genes for
 - growth factor receptors
 - cyclins
 - cyclin-dependent kinases

What kinds of mutations dysregulate the cell cycle?

Proto-oncogene (not mutated) \rightarrow Oncogene (mutated)

Major example in vet med:

c-kit

What kinds of mutations dysregulate the cell cycle?

- Usually negative cell regulators
- Examples:
 - **p**53
 - pRb
 - **p**16

Carcinogenesis

Hallmarks of Cancer

Metastatic Cascade

Metastasis: The development of secondary tumors at a site distant from the primary tumor site.

Metastatic Cascade

Anoikis:

- Programmed cell death occurring upon detachment from the correct extracellular matrix.
- Type of apoptosis.
- Protects against metastasis.

Cancer cells can develop resistance to anoikis → Contributes to metastasis.

Tumor Classification

Epithelial tumors

Mesenchymal tumors – Non-round cell

Round cell

Tumor Classification

Melanomas are technically neural crest origin but often grouped as round cell

Epithelial Tissues

Epithelial Tumors

Characteristics

- Primary tumors any location lined by epithelium
- Metastatic tumors non-epithelial tissue possible

- Benign tumors = -oma
- Malignant tumors = -carcinoma
- Gland tumors = adeno-

Epithelial Tumors

Examples

Squamous Cell Sebo Carcinoma

Sebaceous Adenoma Ap

Apocrine Tumors

Mesenchymal Tissues

- In many organs, give shape and strength
- Mesenchymal cells develop into vessels and connective tissue
 - Major mesenchymal cell types: fibroblast, mesothelial cells, endothelial cells, adipocytes myoblasts, chondroblasts, osteoblasts
- Mesenchymal tissue in the skin:
 - Dermis
 - Subcutis

Mesenchymal Tumors

Characteristics

Often referred to as **soft tissue** or **connective tissue** tumors

Most common malignant neoplasia in cats

Benign tumors = -oma

Malignant tumors = -sarcoma

Mixed mesenchymal/epithelial = carcinosarcoma

Mesenchymal Tumors

Adipose tumors

Lipoma/sarcoma

Connective tissue tumors

- Fibroma/fibrosarcoma
- Hemangiopericytoma
- Sarcoid
- Myxoma/sarcoma

Blood and lymphatic vessel tumors

- Hemangioma/sarcoma
- Glomus tumors
- Lymphangioma/sarcoma

Muscle tumors

- Leiomyoma/sarcoma
- Rhabdomyoma/sarcoma

Peripheral nerve tumors

Round Cells

- Hematopoietic origin: mast cell, histiocyte, plasma cell, lymphocyte
- TVT? (histiocytic?)

Major round cell types:

- histiocytes
- ymphocytes
- plasma cells
- mast cells
- transmissible venereal tumor cells
- (melanocytes)
- Round cells in the skin:Usually dermis

Round Cell Tumors

Characteristics

Benign tumors = -oma

Malignant tumors = variable
Round Cell Tumors

Tumor Grade vs. Stage

Tumor Grade

Tumor Stage

- Based on microscopic characteristics
- Descriptive (high/low) or numeric designation
- May correspond with tumor behavior, metastasis, and/or potential for recurrence

- Extent of spread throughout the body
- Staging act of performing diagnostic tests to determine stage
- Monitors change from baseline, rate of change, and response to treatment.

- Tumor color, size, shape, location, ulceration, consistency (firm, soft)
 - Peripheral lymph nodes

- Duration
- Rate of growth
 - Other tumors
- Systemic signs
 - Therapy

Cytology of Skin Tumors

Three categories

Epithelial tumors Mesenchymal tumors

Round cell tumors

Epithelial Tumors

Characteristics

Cell morphology:

- Round, cuboidal, columnar, or polygonal
- Distinct cytoplasmic borders
- Cytoplasmic vacuoles (glands)

Cell grouping:

- Cohesive sheets/clusters (intercellular junctions)
- Poorly differentiated tumors may lose junctions

Degree of exfoliation: Good

Mesenchymal Tumors

Characteristics

Cell morphology:

- Spindeloid, stellate, or oval
- Cytoplasmic margins indistinct
- Often in extracellular matrix

Cell grouping:

 Individual or non-cohesive aggregates (no intercellular junctions)

Degree of exfoliation: Poor

Round Cell Tumors

Characteristics

Cell morphology: Round

Cell grouping: Individual in monolayer (no intercellular junctions)

Degree of exfoliation: Excellent

Criteria of Malignancy

Goal: To distinguish benign from malignant tumors by assessing variation

More malignant = less differentiated = more variation in cell morphology

More benign = more uniform cell size and NC ratio, resemble cell of origin

Criteria of Malignancy

Nuclear Alterations:

- 1. Size
- 2. Shape
- 3. **Position**
- 4. Number
- 5. Nucleoli
- 6. Mitoses
- 7. Nuclear : cytoplasmic ratio
- 8. Chromatin pattern

Cytoplasmic Alterations:

- Relative amount
- 2. **Quality**
- 3. Content

0

Histopathology

Often required for diagnosis

Removal of tissue from a living organism for microscopic evaluation

Primary purpose: determine diagnosis precisely for proper treatment

Secondary purpose: predict tumor behavior and prognosis

0

Immunohistochemistry

Immunohistochemistry

6

Mast Cell Tumor c-kit staining Plasma Cell Tumor MUM-1/IRF4 staining

Immunohistochemistry

Tumor Type	IHC Marker
Carcinoma (epithelial)	Cytokeratin
Hemangiosarcoma (endothelial)	Factor VIII related antigen, Claudin 5, CD31
Histiocytoma	CD18, CD204, iBA-1
Lymphoma - B-cell	CD79a, CD20, PAX5
Lymphoma - T-cell	CD3
Mast cell tumor	CD117/c-kit
Melanoma	Melan-A, PNL2, TRP-1, TRP-2, +/- S100
Muscle tumor - smooth	Smooth muscle actin, desmin
Muscle tumor - skeletal	Myogenin D, sarcomeric actin, desmin
Neuroendocrine tumor	Chromogranin A, synaptophysin
Plasma cell tumor	MUM-1
Sarcoma (mesenchymal)	Vimentin

Diagnostic Imaging

Molecular Genetics

Analysis of genes and gene expression

Molecular Genetics

PCR Amplification of Antibody Receptor Genes (PARR) Testing

- Reactive vs. neoplastic
- Establish prognosis
- Guide treatment

Lymph Node Evaluation

Lymph Node Evaluation

Sentinel lymph node:

the first lymph node to which cancer cells are most likely to spread from a primary tumor

Lymph Node Evaluation

Lymphatic drainage patterns:

Determine appropriate node to aspirate during staging

Parotid; 2. Submandibular; 3. Retropharyngeal;
 Prescapular; 5: Axillary; 6. Iliac; 7: Inguinal; 8. Popliteal

Flow Cytometry

Tumor Treatments

4 Types in Dogs and Cats

Tumor Treatments

Biologic Therapy

Cause immune system to specifically recognize and destroy tumor cells

- Immunotherapy
- Vaccines
- Cytokine therapy
- Gene therapy

Supportive Care

- Pain / pruritus control
- E-collar / protective clothing
- Secondary infection treatment
- Nutritional support
- Symptom relief paraneoplastic syndromes

Ablative Therapies

Electrosurgery

Uses: curative, palliative, or part of adjuvant protocol

Chemotherapy Photodynamic Therapy Radiation Therapy Electrochemotherapy

Photodynamic Therapy

- Use of light of specific, activating wavelengths, plus molecular oxygen and a photosensitizer that accumulates in a tumor.
- Photosensitizer reacts with molecular oxygen to create reactive oxygen species
- Effects:
 - 1. Vascular stasis and necrosis
 - 2. Membrane damage
 - 3. Apoptosis
 - 4. Inflammatory cascades

Photodynamic Therapy

http://northcoastvetspecialist.com/photodynamic_therapy

Electrochemotherapy

1) i.t. or i.v. injection of cytotoxic

2) Insertion of needle electrodes in tumor

4) repeat steps 2 and 3 for larger or multiple tumors

Cytotoxic Therapies

Electrochemotherapy

- Electrical pulses cause reversible permeabilization of cell membranes to enable entry of chemotherapeutic drugs or immunotherapies into cells (electroporation)
- Incompletely excised cutaneous and SQ tumors
- 3 effects:
 - 1. Directly cytotoxic
 - 2. Antivascular
 - 3. Immunological

Cytotoxic Therapies

Electrochemotherapy

Median Survival Time

The length of time from either the date of diagnosis or the start of treatment that half of the patients with the disease are still alive.

Cytology

Diagnosis?

Cytology

Lymphocytes

Cutaneous Lymphoproliferative Disorders

5 Types in Dogs and Cats

Cutaneous Lymphoma

Cutaneous Lymphocytosis

Tympanic Bulla Lymphoma Lymphomatoid Granulomatosis

Lymphoid Hyperplasia

2 Types in Dogs and Cats

Epitheliotropic

Non-epitheliotropic

- <u>Etiology</u>: Unknown
 - Chronic inflammation?
 - FeLV (cats)?
- <u>Pathogenesis</u>: Both types most commonly T-cell origin
 - B-cell origin rarer and more likely to be non-epitheliotropic

Diagnostic Evaluation

Numerous lymphocytes

Limited diagnostic – can't categorize or differentiate the wide spectrum of lymphomas or other lymphocytic conditions

Histopathology

Pautrier's microabscesses:

Discrete collections of neoplastic lymphocytes in the upper layers of the epidermis (epitheliotropic cutaneous lymphoma)

Histopathology

Serial biopsies may be needed

IHC

PARR

Establish type and character of lymphoid infiltrate

- IHC establishes infiltrate as lymphocytes and characterizes them
 - $CD_3 = T-cell$
 - CD20 and CD79a = B-cell
- PARR establishes clonality of lymphocytes and characterizes them based on receptor (B- or T-cell)

Flow Cytometry

- Another method to establish cells as lymphocytic
 - An option but most commonly used on fluid samples > cytology.

- Non-epitheliotropic lymphoma critical
- Epitheliotropic lymphoma disseminated disease rarer

- Prognosis: Poor
 - Inevitably fatal
 - Certain subtypes worse
 - Tarsal non-epitheliotropic
 lymphoma cats
 - Neoplastic lymphocytes in blood
 - Poor chemotherapeutic response

- Neoplastic lymphocytes hone to epithelial tissues of the skin
 - Epidermis, hair follicles, glands
- Expression of integrins \rightarrow direct interactions with keratinocytes

- Most common form of cutaneous lymphoma in dogs
- Less common form of cutaneous lymphoma in cats
- Overall uncommon
 - <1% skin tumors in dogs
 - 0.2-3% skin tumors in cats

Etiology/Signalment

Pathogenesis:

- Infiltrating lymphocytes are usually Tcells
 - 80-90% CD8+
 - ~60% γ/δ
 - Remainder are CD₄- CD₈- T-cells
- +/- increased CD25+ T-cells
- Increased Th-1 type cytokines IL-12 and IFN-γ in affected skin
- Increased CD₈₊ T-cell markers in affected skin (perforin, granzyme B)

Etiology/Signalment

Signalment:

- Older dogs
- Breeds: cocker spaniels, boxers, golden retrievers?

Clinical Signs

3 clinical forms:

- 1. Mycosis fungoides
- 2. Pagetoid reticulosis
- 3. Sezary syndrome

Clinical Signs

Mycosis Fungoides Pagetoid Reticulosis

- Generalized exfoliative erythroderma
- Mucocutaneous depigmentation
- Erosions / ulcers
- Cutaneous nodules or plaques
- Infiltrative mucosal lesions
- Vesiculobullous variants

Clinical Signs

Mycosis Fungoides Pagetoid Reticulosis

Difference is histopathologic:

PR: infiltrate in epidermis and adnexa

MF: infiltrate also in dermis

Clinical Signs

1. Exfoliative Erythroderma

3. Solitary/Multifocal Nodules

2. Mucocutaneous Form

4. Oral Ulcerative Disease

Figure 1. Showing representative images of the 4 categories of clinical presentation in dogs

Clinical Signs

Sezary Syndrome

- Progressive form of MF
- Skin lesions + leukemia
 - Sezary cells neoplastic lymphocytes in peripheral blood
- Extremely rare

Treatment/Prognosis

- <u>Treatment</u>: No standard of care
 - Chemotherapy
 - Non-chemotherapeutics
 - Retinoids
 - Safflower oil
 - Apoquel
 - Cytopoint?
 - Glucocorticoids
 - Radiation

Treatment/Prognosis

- <u>Prognosis</u>: Poor. Euthanasia usually due to poor quality of life
 - Disseminated disease rare
 - MST 6 months
 - MST longer if mucosal vs. skin lesions (491 vs. 130 days)

Etiology/Signalment

<u>Pathogenesis</u>: Less is known.
 Likely CD₈+ T-cells

• <u>Signalment:</u> Median 13.5 yo. No sex or breed predilection

Clinical Signs

- Single or multifocal
- Exfoliative erythroderma
- Patch, plaque
- +/- pruritus

Distribution:

 Face, eyelids, mucocutaneous junctions, elbows, trunk > oral cavity

Treatment/Prognosis

- <u>Treatment</u>: No studies evaluating efficacy of any chemotherapeutic agent on survival time. Reported use of:
 - Radiation
 - Chemotherapeutics (vincristine, lomustine, cyclophosphamide)
 - Fibronectin
- Prognosis: MST 10-25 months, range 4 years

Neoplastic lymphocytes in dermis and SQ

Likely represents diverse as yet poorly characterized conditions

Pathogenesis:

- Infiltrating lymphocytes are usually Tcells
 - Mostly CD8+
 - Remainder are CD₄- CD₈- T-cells
- Different categories of T-cell nonepitheliotropic cutaneous lymphomas
 - Unknown clinical significance
 - Most are called *peripheral T-cell* lymphomas, not otherwise specified (PTCL-NOS)

- Variable presentations
- Single, multiple, or diffuse SQ nodules, slow or rapid growth
 DDx panniculitis
- Common rapid metastasis to lymph nodes and systemic
- +/- Paraneoplastic hypercalcemia

Challenging

- Canine inflamed nonepitheliotropic cutaneous lymphomas
 - Similar histopathologically to histiocytic diseases
 - PARR testing and IHC less diagnostic - marked (polyclonal) reactive lymphoid infiltrate.

Immunophenotyping – prognostic
Cutaneous Non-Epitheliotropic Lymphoma

 Canine B-cell lymphomas have longer MST than T-cell, with the opposite true for cats.

Poor overall - short-lived remissions, no cure

 Variably named – confusing
 Synonyms; cutaneous pseudolymphoma, lymphocytoma cutis, cutaneous lymphoid hyperplasia, indolent lymphoma

Very rare (cats > dogs)

• Etiology: unknown

 Indolent, slowly progressive cutaneous lymphoma?

- Monoclonal lymphoid populations
- May transform to high grade
 lymphoma

- <u>Diagnosis</u>:
 - Histopathology
 - IHC
 - PARR (caution interpreting)
- <u>Prognosis</u>: Guarded but unpredictable
 - Systemic progression possible after years of stability
 - Spontaneous regression possible (N=1 dog)

- <u>Pathogenesis</u>: Most infiltrating
 lymphocytes are CD₃+ T-cells.
 May co-express CD₈+.
 - May have aggregates of CD20+ B-cells in infiltrate
 - Most are alpha-beta T-cells (dogs)
- <u>Signalment</u>: Older age

 <u>Treatment</u>: No established protocol. Steroids most commonly used.

Cutaneous Lymphoproliferative Disorders

Lymphomatoid Granulomatosis

- Rare lymphohistiocytic proliferative disorder
- Infiltrating lymphocytes primarily CD3, CD20, and CD79 positive
- Atypical non-epitheliotropic T-cell lymphoma?
- Systemic signs consistently

Clinical Signs Lymphomatoid Granulomatosis

Clinical Signs

Lymphomatoid Granulomatosis

Clinical Signs Lymphomatoid Granulomatosis

SYSTEMIC SIGNS:

- Systemic involvement primarily LUNG
- Also lymph nodes, liver myocardium mesenteric fat, kidney, pancreas, adrenal gland, colon, skeletal muscle, bone marrow oral cavity, periocular thyroid, synovium

• Eosinophilia, lymphocytosis, hyperglobulinemia

Treatment/ Prognosis

Lymphomatoid Granulomatosis

<u>Treatment:</u> Chemotherapy

Prognosis: Poor

- Dog MST 3 months (range 0 to 4 years)
- Cat MST < 2 months
- Euthanasia frequently due to respiratory distress
- Remission with chemotherapy rare but possible (dog)

Tympanic Bulla Lymphoma

• Otitis media / interna (cats)

• T-cell > non-B non-T cell origin

Poor prognosis

Lymphoid Hyperplasia

Cytology

Diagnosis?

Cytology

Mast cells

Cutaneous Mast Cell Proliferations

4 Types in Dogs and Cats

Mast Cell Tumors

Urticaria Pigmentosa

Diffuse Cutaneous Mastocytosis Systemic Mastocytosis with Cutaneous Involvement

Mast Cell Tumors

- Majority: local therapy (surgery +/- radiation)
- Minority: metastasis and short survival times
- Spontaneous regression: cats, pigs, horses, humans, and one dog

Mast Cell Tumors

Dog

- Mast cell sarcoma, mastocytoma
- Cutaneous or subcutaneous > visceral

Etiology/Signalment

Mast Cell Tumors

- Etiology unknown
 - <u>c-kit mutation (exon 8,9, or</u> <u>11)</u>
 - \rightarrow gain of function
 - survival, proliferation, and oncogenic transformation of MCTs

****Not found in all MCTs**

Etiology/Signalment

Mast Cell Tumors

Stem cell factor (also known as SCF, KIT-ligand, KL, or steel factor)

- Cytokine
- Binds KIT receptor tyrosine kinase (aka <u>CD117</u>), which is encoded by ckit gene

Mutations causing constitutive activation of KIT in the absence of ligand binding lead to uncontrolled mast cell proliferation, differentiation, and survival

Etiology/Signalment

Mast Cell Tumors

- Mean age: 8-9 yo
- Breeds: bulldog descendants,
 Labs, goldens, cockers,
 schnauzers, Staffordshire bull
 terriers, beagles, Rhodesians,
 Weimaraners, *shar peis*

Clinical Signs

Mast Cell Tumors

- Single or multiple nodules (dermal, SQ)
- +/- ulceration, local swelling, erythema
- Trunk/perineum (50%) > limbs (40%) > head/neck (10%)

Clinical Signs

Mast Cell Tumors

Figure 1: Clinical findings in a dog with a cutaneous non-nodular high grade MCT. The lesions at the time of the original presentation appeared as erythematous slightly raised plaques on the skin of the left thoracic wall.

Mast Cell Tumors

Major effects:

- (i) IgE-mediated antiparasite response and allergy
- (ii) Immune cell recruitment and activation
- (iii) Tissue repair, wound healing, fibrosis, and angiogenesis
- (iv) Molding the tumor microenvironment

PARANEOPLASTIC

- Darier's Sign: histamine
- GI ulceration: histamine \rightarrow parietal cells
- Coagulation abnormalities: heparin
- Delayed wound healing/Wound dehiscence: vasoactive amines, proteolytic enzymes
- Hypereosinophilia: IL-5
- Hypotension: histamine, vasoactive substances, and maybe prostaglandin D series -> vasodilation
- Neovascularization and fibroblast proliferation: fibroblast growth factors

Prognostic Indicators

Mast Cell Tumors

HISTOLOGIC GRADE

- Most strongly predictive of outcome
- Patnaik (3-tiered) vs. Kiupel (2tiered)

****Not for SQ tumors**

Prognosis (Patnaik)

Mast Cell Tumors

Grade I Grade III **Grade II Poorly differentiated** Well-differentiated Intermediately differentiated Invasive, aggressive Rare to spread beyond skin Unpredictable Mets to spleen, bone marrow, **Surgery curative** Mitotic index, AgNOR, and c-kit help liver, Inn (rarely lung) prognosticate? Surgery alone unlikely to control disease 80-90% of Grade I and 75% of Grade II experience long-term survival after complete sx excision. 55-96% are metastatic MST <1 year **A small % may still cause death
Prognosis (Kiupel)

Mast Cell Tumors

or new tumor development

Prognostic Indicators

Mast Cell Tumors

Subcutaneous Mast Cell Tumors

- Restricted to the subcutis only
- Low incidence of aggressive behavior
- No validated histopathologic grading system

Other Prognostic Indicators

Prognostic Indicators

Mast Cell Tumors

c-kit mutations

- Alterations in the oncogene (c-kit) are associated with:
 - 25-30% intermediate and high grade MCTs
 - Mutation in exon 11 increased risk of local recurrence, metastasis, and tumor-related death

Diagnostic Algorithm

Diagnostic Algorithm

Diagnostic Algorithm

Mast Cells

Immunohistochemistry

Stains

- Vimentin+
- **KIT(CD**117)+
- Tryptase+
- Chymase+
- MCP-1+
- **IL-**8+

- Toluidine blue
- Giemsa

- 3 mast cell tumor syndromes in cats:
 - 1. Cutaneous
 - 2. Splenic/visceral
 - 3. Intestinal

Mast Cell Tumors

Concurrent visceral and skin mast cell tumors are generally considered to be two distinct, independent forms of mast cell neoplasia

- 3 mast cell tumor syndromes in cats:
 - 1. Cutaneous
 - 2. Splenic/visceral
 - 3. Intestinal

Mast Cell Tumors

- 2 cutaneous mast cell tumor
 types:
 Listicastic
 - 1. Histiocytic
 - 2. Mastocytic

**In both types, cats are usually systemically healthy

- Etiology: unknown
 - Some have activating c-kit mutations
- Mean age:
 - Mastocytic type: 8-9 yo
 - Histiocytic type: ~2 yo
- Breed: Siamese (histiocytic)

Mast Cell Tumors

HISTIOCYTIC SUBTYPE

- Siamese cats
- Predominantly young
- Less common than mastocytic
- Multiple, firm, non-pruritic, hairless, pink, SQ nodules

Mast Cell Tumors

MASTOCYTIC SUBTYPE

- More common
- Older cats
- Head, neck > trunk, limbs, mouth
- Different presentations
 - Solitary, raised, firm, wellcircumscribed, hairless, whitepink (most common)
 - +/- Multiple nodules (20%)
 - SQ nodules (ddx panniculitis)
 - +/- Darier's sign

Prognostic Indicators

Mast Cell Tumors

No one factor is entirely predictive of biologic behavior in cats

Usually more benign than in dogs

Prognostic Indicators

- No histopath grading system
- Higher mitotic index generally indicates higher risk for metastasis and local recurrence (*but not always*)
- >5 tumors = worse prognosis
- Mastocytic type
 - Compact vs. anaplastic

Wide margins not as critical

Spontaneous regression of histiocytic form is possible

Urticaria Pigmentosa

Differentiation from MCTs historically has been based on:

- number of lesions (MCT are typically solitary, though they may be multifocal)
- age at onset (typically young)
- lack of progression (indolent mast cell behavior)
- restriction to skin

Urticaria Pigmentosa

Urticaria Pigmentosa

• Devon rex, sphynx

3 Clinical Presentations

_ _ _ _ _ _ _ _ _ _ _ _ _

Urticaria Pigmentosa

1. Non-pigmented pruritic papules and wheals on head, shoulders, ventral neck, and axillae

Urticaria Pigmentosa

2. Non-pigmented maculopapular erythematous and pruritic dermatitis with crusts

Urticaria Pigmentosa

3. Pruritic chronic dermatitis with bilaterally symmetrical pigmented lesions on flanks

Treatment / Prognosis

Urticaria Pigmentosa

 <u>Treatment</u>: Variable response to oral steroids, H1 and H2 blockers. Cytopoint for pruritus (dogs).

• <u>Prognosis</u>: Excellent for longterm survival. Indolent progression. Spontaneous regression possible.

Diffuse Cutaneous Mastocytosis

- N=1 cat
- 1 yo FS DSH
- Pruritic papulocrustous lesions from head to whole body
- Diffuse induration / lichenification
- Lymph node involvment
- Poor response to treatment

Diffuse Cutaneous Mastocytosis

Same as urticaria pigmentosa?

- Not Sphynx/Devon Rex
- Diffuse lichenification
- Lymph node involvement

Systemic Mastocytosis with Cutaneous Involvement

N=1, 5 yo FS Greyhound Skin, liver, spleen, heart, esophagus, bone marrow Ecchymoses, pitting edema

N=1, 15 yo F DMH Skin, liver, spleen, bone marrow, lung

Cytology

Diagnosis?

Cytology

Plasma cells

Cutaneous Plasma Cell Disorders

3 Types in Dogs and Cats

Solitary Extramedullary Cutaneous Plasmacytoma

Cutaneous Plasmacytosis Cutaneous Metastasis from Multiple Myeloma

95% cutaneous plasma cell tumors

Solitary Extramedullary Cutaneous Plasmacytoma

• Extramedullary solitary plasmacytomas are *mostly cutaneous* (86%)

 Also mouth, lips, GI tract, spleen, genitalia, eye, nictitans, larynx, liver, trachea

Solitary Extramedullary Cutaneous Plasmacytoma

Signalment: Mean 9-10 yo

Predisposed breed: Airedale,
 boxer, cocker spaniel,
 German shepherd dog, West
 Highland white terrier,
 Yorkshire terrier

Solitary Extramedullary Cutaneous Plasmacytoma

Single, solitary, smooth, raised pink, variably alopecic nodule up to 10cm diameter

SYSTEMIC SIGNS Typically none
Clinical Signs

Solitary Extramedullary Cutaneous Plasmacytoma

Treatment/Prognosis

Solitary Extramedullary Cutaneous Plasmacytoma

- <u>Treatment</u>: Conservative sx excision typically curative. Anecdotally: cryo, CO₂ laser, electrocautery
- <u>Prognosis</u>: Vast majority are BENIGN and amenable to local therapy, even if vascular invasion on histopath.
 - Typically, no effect on lifespan

Treatment/Prognosis

Solitary Extramedullary Cutaneous Plasmacytoma

HOWEVER....

- Local recurrence 5% after sx
- 2% develop nodal or distant metastases
- <2% develop new cutaneous plasmacytomas at distant sites
- Monoclonal gammopathy or plasma cell leukemia possible

Plasma Cell

Plasma cell (plasmacyte);

Immune cell that develops from activated B-cells for the purpose of synthesizing and secreting a specific type of antibody

M Protein

M (myeloma or monoclonal) protein:

abnormal antibody or antibody fragment, such as an immunoglobulin light chain, that is produced in excess by an abnormal monoclonal proliferation of plasma cells, typically in multiple myeloma

M Protein

Monoclonal gammopathy:

Accumulation of Mproteins in the blood, produced from a small number of atypical plasma cells

Bence-Jones Protein

Bence-Jones protein:

immunoglobulin light chains found in excessive quantities in urine in multiple myeloma **Etiology/Signalment**

Solitary Extramedullary Cutaneous Plasmacytoma

• Extramedullary solitary plasmacytomas are *mostly cutaneous*

• Also mouth, eye, GI tract, liver, brain, and SQ tissues **Etiology/Signalment**

Solitary Extramedullary Cutaneous Plasmacytoma

 <u>Signalment</u>: Not established

 May be benign, but may also progress to systemic myeloma-related diseases **Treatment/Prognosis**

Solitary Extramedullary Cutaneous Plasmacytoma

<u>Treatment</u>: If confined to a local site and/or regional lymph nodes, sx excision and chemotherapy may result in long-term control

• <u>Prognosis</u>: Poorly defined (too rare). Early widespread metastasis and progression to multiple myeloma possible

Cutaneous Plasmacytosis

<u>Behavior:</u> Biologically aggressive

- Lymph node or visceral involvement (30% cases)
- +/- Monoclonal gammopathy

 <u>Signs:</u> 10s to 100s of cutaneous plasmacytomas

- <u>Treatment:</u> Systemic
 chemotherapy (melphalan = tx of choice).
- <u>Prognosis</u>: Similar to multiple myeloma

 <1% cutaneous plasma cell tumors are metastases from multiple myeloma

BUT

 Up to 30% cats with multiple myeloma will have cutaneous metastases

SYSTEMIC SIGNS

Associated with:

- Infiltration with neoplastic plasma cells
- Circulating M-component
- Bone disease
- Bleeding diatheseis
- Hyperviscosity syndrome
- Cytopenia (myelophthisis)
- Heart failure
- Hypercalcemia
- Immunodeficiency / infections
- Renal disease

CUTANEOUS SIGNS

• Single or multiple nodules (dermal, SQ)

 Cryoglobulinemia / Cold Agglutinin Disease?

Minimum Diagnostic Evaluation

Minimum Diagnostic Evaluation

Numerous, well-differentiated plasma cells

Mott cells (Russell bodies)

Minimum Diagnostic Evaluation

CBC, chem, UA, ionized calcium

Pay attention to RENAL FUNCTION and SERUM CALCIUM

Additional Testing Options

IHC **PARR** testing

Additional Testing Options

Used to differentiate from other round cell tumors

• IHC

- MM-1/interferon regulatory factor-4 (MUM1/IRF4)
- Immunoglobulin light and heavy chains
- Thioflavin T

Additional Testing Options

- Cutaneous plasmacytosis and multiple myeloma important, high metastatic rate
- Cutaneous solitary extramedullary plasmacytomas less important
- Tests:
 - Bone marrow aspirate
 - Bone imaging
 - Systemic imaging
 - Demonstration of serum or urine M component