Pharmacology of immunosuppressants used in cats and dogs

Virginia-Maryland College of Veterinary Medicine

DR BEN THAM, DVM DIPLOMATE, ACVD NAVDF RESIDENT EDUCATION FORUM 8TH MAY, 2023

Outline

- Immunosuppressants:
 - ≻Glucocorticoids≻Cyclosporine
 - Azathioprine
 - ≻Chlorambucil

- Mycophenolate mofetil
 Oclacitinib
 Bruton's tyrosine kinase
 - inhibitor
- Mechanism of action
- Autoimmune dermatological uses in cats and dogs
- Adverse effects

HPA axis and cortisol

Steroid biosynthesis pathway

VIRGINIA TECH.

Direct GRE binding

Direct binding to GC Receptor Element (GRE)

+ GRE

Induces transcription of genes that have anti-inflammatory properties:

- Annexin-1
- GC-induced leucine zipper (GLIZ) → NFκB, MAPK
- Mitogen-activated protein kinase phosphatase 1 (MPK1)

nGRE

Inhibits transcription of genes:

- Corticotrophin-releasing hormones (CRH)
- β-endorphins
- Melanocyte-stimulating hormones (MSH)

Tethering

Virginia-Maryland College of Veterinary Medicine

Composite binding

College of Veterinary Medicine

Glucocorticoid: Nongenomic mechanism

Virginia-Maryland College of Veterinary Medicine

Nuclear factor- kB (NFkB)

VIRGINIA TECH

Glucocorticoid (GC) Dermatological uses

- Pemphigus foliaceus (PF), autoimmune subepidermal blistering dermatoses (AISBD), cutaneous lupus erythematosus, pemphigus vulgaris (PV), uveodermatological syndrome (UDS)
- Oral GC pulse therapy in canine PF (Bizikova, Vet Dermatol 2015):
 > Higher proportions of CR in the first 3 months
 > Lower average maximal GC use
- Oral GC monotherapy: most common drug at the time of disease control in feline PF (Bizikova, *BMC Vet Res* 2019)
- Higher doses of oral GC +/- immunosuppressants needed for PV and canine UDS (Tham, *BMC Vet Res* 2020)

Glucocorticoid Adverse effects

- Wide distribution of GR in all nucleated cells
- iatrogenic hyperadrenocorticism
- gastrointestinal ulceration
- cutaneous atrophy
- diabetes mellitus due to insulin resistance
- opportunistic infections
- delayed wound healing

Clinicopathologic, hemodynamic, and echocardiographic effects of short-term oral administration of antiinflammatory doses of prednisolone to systemically normal cats

Am J Vet Res 2019

Imal A. Khelik BS	OBJECTIVE
Darren J. Berger DVM	fo evaluate the clinicopathologic, hemodynamic, and echocardiographic ef- fects of short-term administration of anti-inflammatory dosages of pred-
Jonathan P. Mochel DVM, PhD	nisolone to systemically normal cats.
Yeon-Jung Seo PhD	ANIMALS
Jean-Sébastien Palerme DVM, MS	10 cats with allergic dermatitis and 10 healthy control cats.
Wendy A. Ware DVM, MS	PROCEDURES
Jessica L. Ward DVM, MS	Cats with allergic dermatitis were randomly allocated to 2 groups and

- the anti-inflammatory dose of oral prednisolone (1-2mg/kg/day) given to healthy cats with allergic dermatitis for 14 days did not result in significant hemodynamic and echocardiographic changes
- But is that true for immunosuppressive doses??

Cyclosporine (CsA)

- Derived from the soil fungus *Beauveria nivea*
- Ultramicronized (microemulsified) preparation, in which absorption is more consistent and predictable.

Generic modified cyclosporine achieved ______ blood concentrations at 1 hour post-administration than Atopica after a single oral administration in normal healthy dogs.

Alower
B higher
C similar
D I don't know

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Generic modified cyclosporine achieved ______ blood concentrations at 1 hour post-administration than Atopica after a single oral administration in normal healthy dogs.

A lower B higher C similar D I don't know

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Generic modified cyclosporine achieved ______ blood concentrations at 1 hour post-administration than Atopica after a single oral administration in normal healthy dogs.

DOI: 10.1111/vde.13147

Veterinary Dermatology

ORIGINAL ARTICLE

Comparison of whole blood concentrations of oral human generic modified ciclosporin capsules with microemulsified ciclosporin capsules approved for canine atopic dermatitis following a single oral administration to healthy dogs Cheryl Vargo | Michaela Austel | Frane Banovic ©

- 1 hour post-administration CsA blood concentration: generic > Atopica
- 1.5 hour post administration: no significant difference
- Need Cmax and AUC to determine bioequivalence (PK studies)

Nuclear factor of activated T cell (NFAT)

Cyclosporine (CsA): Mechanism of action

Cyclosporine Dermatological uses

- Pemphigus foliaceus
- Cutaneous lupus erythematosis
- Pemphigus vulgaris
- Uveodermatological syndrome
- Canine immune-mediated perianal fistula
- Sebaceous adenitis
- Ischemic dermatopathies

Cyclosporine: Adverse effects

Table 2: Top 10 adverse clinical signs associated with ciclosporin treatment in dogs reported to pharmacovigilance between September 2002 and March 2012

Adverse clinical signs	Absolute incidence*
All suspected adverse events	71.81
Vomiting	27.57
Diarrhoea	13.46
Lethargy	9.58
Abnormal test result [†]	8.59
Pruritus	7.80
Anorexia	6.65
Hyperactivity	3.22
Gingival disorder	2.98
Tachypnoea	2.96
Polydipsia	2.58

* Number of dogs affected/1 million capsules sold

Tincludes various clinical pathology values outside of their normal range

(Nuttall, Vet Record 2014)

Stability and pharmacokinetics of modified cyclosporine stored at -20°C

Blinded, randomized cross-over study

8 healthy dogs, room temp/frozen CsA 5mg/mg once

Stability and absorption of modified CsA not affected by freezing (Bachtel, Vet Dermatol 2015)

Cyclosporine Adverse effects

- Vomiting and diarrhea most common
- Gingival hyperplasia

Which of the following is one of the proposed pathogenesis of CsA-induced gingival hyperplasia?

A Reduction in the secretion of TGF

B Downregulation of salivary IL-6 and IL-8

C Increase in the expression of BAX/BCL2 ratio

D Inhibition of the secretion of matrix proteases

Which of the following is one of the proposed pathogenesis of CsA-induced gingival hyperplasia?

A Reduction in the secretion of TGF

B Downregulation of salivary IL-6 and IL-8

C Increase in the expression of BAX/BCL2 ratio

D Inhibition of the secretion of matrix proteases

Which of the following is one of the proposed pathogenesis of CsA-induced gingival hyperplasia?

A Reduction in the secretion of TGF

B Downregulation of salivary IL-6 and IL-8

C Increase in the expression of BAX/BCL2 ratio

D Inhibition of the secretion of matrix proteases

Cyclosporine Adverse effects

- Vomiting and diarrhea most common
- Gingival hyperplasia
- Cutaneous papillomatosis
- Hypertrichosis
- Psoriasiform-lichenoid dermatitis
- Opportunistic infections (especially when given with oral GC)
 - bacterial (Nocardia spp, Burkholderia cepacian complex)
 - fungal (Alternaria spp, Curvularia spp, Aspergillus spp.)

Effects of oral CsA on Toxoplasma gondii infection status of cats

College of Veterinary Medicine

27/30 cats developed self-limiting clinical signs; **resolved within 6 weeks**

CsA did not reactivate oocyst shedding and pre-existing subclinical disease

1 cat died on D64; CsA level D56: 1,690ng/ml 1 cat euthanized on Day 84, CsA level: 419ng/ml 1 cat found dead; mean CsA level >1000ng/ml higher than mean of Group 3 Clinical signs more severe

Effects of oral CsA on Toxoplasma gondii infection status of cats

Conclusions:

- More severe signs in naïve cats receiving CsA
- Naïve cats may be at risk of developing clinical toxoplasmosis while on CsA
- Treatment with CsA did not reactivate oocyst shedding or pre-existing subclinical disease
- Avoid hunting and raw food to reduce risk

Azathioprine (AZA)

- Prodrug of 6-mercaptopurine (6-MP)
- Interferes with nucleotide synthesis

Azathioprine (AZA) Mechanism of action

Azathioprine Dermatological uses

- Steroid-sparing immunosuppressant
- PF, UDS, PV, VCLE, immune-mediated perianal fistula and symmetrical lupoid onychodystrophy
- AZA + oral GC combination most commonly used at time of disease control for:
 - Canine pemphigus foliaceus (Mueller, JAAHA 2006)
 - Uveodermatological syndrome (Tham, BMC Vet Res 2019)
 - Pemphigus vulgaris (Tham, BMC Vet Res 2020)

Azathioprine Adverse effects

- Myelosuppression
 - TPMT levels not correlated with risk in dogs
 - TPMT level much lower in cats higher risk of immunosuppression
- Hepatotoxicosis
 - Much lower incidence (5% vs 15%) when administered EOD along with tapering GC (Eberhardy, *Vet Dermatol* 2020)
 - Median onset: 14 days (13-22 days)

Chlorambucil (CLB) Definition

- Alkylating agent: transfer of a reactive alkyl group from one molecule to another forming covalent bonds
- Nucleophile ("Donor"): provides a pair of electron to form covalent bond
- Electrophile ("Recipient"): accepts a pair of electron to form covalent bond
- Chlorambucil is a reactive electrophile (Recipient)
- Guanine (N7 position) is the most nucleophilic site (Most generous "donor")
- Cytotoxic effects: alkylate the nucleophilic portion of a DNA molecule through the formation of covalent bonds.
- Causes "unwanted" cross-linking of DNA:
 - Intrastrand
 - Interstrand (most "devastating" effect)

Chlorambucil (CLB) Mechanism of action

3'

Chlorambucil (CLB) *Mechanism of action*

Chlorambucil (CLB) *Mechanism of action*

Chlorambucil (CLB) Definition

- Alkylating agent: transfer of a reactive alkyl group from one molecule to another **forming covalent bonds**
- Nucleophile ("Donor"): provides a pair of electron to form covalent bond
- Electrophile ("Recipient"): accepts a pair of electron to form covalent bond
- Chlorambucil is a reactive electrophile (Recipient)
- Guanine (N7 position) is the most nucleophilic site (Most generous "donor")
- Cytotoxic effects: alkylate the nucleophilic portion of a DNA molecule through the formation of covalent bonds.
- Causes "unwanted" cross-linking of DNA:
 - Intrastrand
 - Interstrand (most "devastating" effect)

Chlorambucil (CLB): Bifunctional alkalyting agent Mechanism of action

Chlorambucil (CLB) Dermatologic uses

- In cats:
 - steroid-sparing agent in feline pemphigus foliaceus
- In dogs: (along with cyclosporine and prednisolone)
 - Vaccine-induced ischemic dermatopathy (Kim, J Vet Med Sc 2011)
 - Canine eosinophilic granuloma (Knight, Vet Dermatol 2016)

Chlorambucil (CLB) Adverse effect

- Myelosuppression 7-14 days
- Reversible myoclonus (Benitah et al, JAAHA 2003)
- Fanconi syndrome (Reinert et al, JFMS 2016)

Mycophenolate mofetil (MMF)

- Active metabolite: mycophenolic acid (MPA)
- Interferes with guanine synthesis via inhibition of inosine monophosphate dehydrogenase (IMPDH) enzyme

Guanine nucleotide and de novo pathway

College of Veterinary Medicine

PRPP: 5-phosphoribosyl-1-pyrophosphate
IMP: inosine monophosphate
XMP: xanthine monophosphate
GMP: guanosine monophosphate
GTP: guanosine triphosphate
dGTP: deoxyguanosine triphosphate

Mycophenolate mofetil: Mechanism of action

MMF: mycophenolate mofetil MPA: mycophenolic acid

Mycophenolate mofetil (MMF) Dermatologic uses

- Canine pemphigus foliacues
- Exfoliative cutaneous lupus erythematosus (ECLE)
- Vesicular cutaneous lupus erythematosus (VCLE)
- Mucocutaneous cutaneous lupus erythematosus (MCLE)
- Epidermolysis bullosa acquisita (EBA)
- Except for the dog with ECLE (Ferigno, Vet Dermatol 2019), MMF was used as an adjunct therapy along with GC, CsA and/or topical tacrolimus

Mycophenolate mofetil (MMF) Adverse effect

- Diarrhea most common
- In one study, 23/127 dogs (18%) had diarrhea (Fukushima, J Vet Int Med 2021)
- Resolved with dose reduction or discontinuation of MMF

Oclacitinib

- Janus kinase inhibitor (JAKi)
- Four members: JAK1, JAK2, JAK3 and TYK2

(Gonzales, J Vet Pharmacol Ther 2014)

Cytokines and JAKs

(Shuai, Nature Reviews Immunology 2003)

Oclacitinib: Mechanism of action

XJAK inhibitor

(Modified from Nature Reviews Immunology 2003)

Oclacitinib and immunosuppression

Higher doses result in:

- Reduction in IL-2, IL-15, IL-18 and IFN-γ (Banovic, Vet Dermatol 2019)
- Induced apoptosis of canine CD4+ and CD8+ T cells in vitro (Jasiecka-Mikołajczyk, Res Vet Sci 2018)

Oclacitinib Dermatologic uses

Oclacitinib Adverse effect

- Cutaneous papilloma
- Demodicosis
- Bacterial pneumonia in several 6- and 12-month-old dogs

(Zoetis safety studies)

Oclacitinib Adverse effect

Vet Dermatol 2022; 33: 149-e42

Virginia-Maryland College of Veterinary Medicine DOI: 10.1111/vde.13053

Prolonged twice-daily administration of oclacitinib for the control of canine atopic dermatitis: a retrospective study of 53 client-owned atopic dogs

Daria Denti* 💿, Marco Caldin†, Laura Ventura‡ and Michela De Lucia* 💿

- Median treatment duration: 113 days (Range: 21-1277 days)
- Pyoderma, gastrointestinal upset and otitis externa
- Mild neutropenia (n=3), eosinopenia (n=6) and leukopenia (n=2)
- Hypercholesterolemia in 3 dogs

Oclacitinib Adverse effect

CASE REPORT

Veterinary Dermatology

Fatal disseminated toxoplasmosis in a feline immunodeficiency virus-positive cat receiving oclacitinib for feline atopic skin syndrome

Alexandra Moore¹ | Amanda K. Burrows¹ | Richard Malik² | Rudayna M. Ghubash³ | Robert D. Last⁴ | Benjamin Remaj⁴

(Vet Dermatol 2022)

Bruton's tyrosine kinase (BTK)

• Signaling protein

College of Veterinary Medicine

- Links the B-cell receptor (BCR) with B cell proliferation and survival
- Also present in mast cells, monocytes, macrophages, neutrophils and platelets.
- NOT present in T cells.

(Modified from Tingyu, Leukemia 2021)

Bruton's tyrosine kinase (BTK)

(Neys, Drugs 2021)

BTK associated diseases in humans

Lymphoproliferative disorders

- Chronic lymphocytic leukemia
- Mantle cell lymphoma
- Waldenström's macroglobulinemia
- Diffuse larger B cell lymphoma

Autoimmunity

- Systemic lupus erythematosus
- Rheumatoid arthritis
- Multiple sclerosis
- Pemphigus vulgaris

B cells and autoimmunity

BTK inhibitors Mechanism of action

(Modified from Tingyu, Leukemia 2021)

BTK inhibitor *Mechanism of action*

(Neys, Drugs 2021)

BTK inhibitor and canine pemphigus foliaceus

PRN 473

- 9 dogs
- Dosage: 15mg/kg SID for 20wks
- Outcome:
 - Good: 4 dogs
 - Fair: 2 dogs
 - Poor: 2 dogs
 - Withdrew: 1 dog (relapse of mast cell tumor)
 - *3 achieved near CR by week 20

PRN1008

- 4 dogs
- Dosage: 15mg/kg SID for 20wks
- Outcome:
 - Good: 3 dogs
 - Fair: 1 dog

BTK inhibitor and canine pemphigus foliaceus

PRN 473 (n=9)

Adverse effects:

- Immune-mediated polyarthritis (n=1)
- Peripheral lymphadenopathy (n=1)
- Diarrhea and inappetence (n=1; diagnosed with chronic pancreatitis)
- Mast cell tumor?? (n=1)

PRN1008 (n=4)

Adverse effects:

• Pyometra?? (n=1)

Pharmacology of immunosuppressants used in cats and dogs

Virginia-Maryland College of Veterinary Medicine

DR BEN THAM, DVM DIPLOMATE, ACVD NAVDF RESIDENT EDUCATION FORUM 8TH MAY, 2023

